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Abstract—Edge computing extends computational capabilities
to the physical edge of the world, providing faster and more
efficient responses to consumer devices such as smart home
appliances, smartphones, and wearable devices. However, it raises
a critical question: How can we efficiently manage time-sensitive
and computationally intensive tasks to meet device performance
needs? To address this, we propose a computational cost-driven
strategy for computation offloading based on reinforcement
learning for consumer devices. Firstly, we convert the problem
of minimizing computational costs, including latency and energy
consumption, into maximizing the cumulative rewards problem
of consumer devices. Second, we design a task completion
time estimation method to ensure a favorable user experience.
Third, by comprehensively considering the status of the network,
computational demands, and task completion times, we employ
reinforcement learning techniques to determine the optimal task
offload strategy for consumer devices by maximizing cumulative
rewards. This ensures efficient task completion with lower
computational costs. The simulation results demonstrate that our
method achieves the highest rewards in different scenarios. Our
method reduces the task discard ratio by 25% compared to the
PPO_KLP-based offload strategy.

Index Terms—Mobile edge computing, computation offloading,
task characteristics, completion time estimation.

I. INTRODUCTION

SMART home devices, smartphones, wearable devices,
and other intelligent consumer devices are proliferating

at an unprecedented rate in today’s digital world, playing
an increasingly crucial role in people’s lives [1]. The emer-
gence of mobile edge computing (MEC) [2] technology has
enabled these applications to achieve faster and more efficient
responses to user demands, resulting in low latency and per-
sonalized user experiences [3]. Smart surveillance cameras [4]
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can perform image analysis locally, detecting intrusions or fires
in real time without transmitting massive video data to the
cloud. Health and fitness trackers [5] can locally monitor and
analyze physiological data from users, such as heart rate and
step count, in real time, eliminating the need to wait for the
data to be uploaded to the cloud for processing.

However, with the rapid development of smart consumer
devices, the demand for time-sensitive and computationally
intensive tasks continues to grow. For example, smart home
devices [4] need to collect, process, and analyze a large
amount of data to meet the manufacturers’ requirements to
improve product performance and predictive maintenance.
Despite collecting data locally, these devices may be unable to
complete complex data analysis and inference tasks within a
reasonable timeframe due to limited computational resources,
thus limiting their functionality. Smart speakers and voice
assistants [6] need to process voice input, perform speech
recognition, and interpret commands in real time to respond
quickly to user instructions. However, due to the complexity
of computational tasks, these devices may require more time
to complete processing, significantly affecting user experience
and interaction smoothness. In this context, research on task-
offloading strategies for these tasks has become particularly
urgent.

Research on computation offloading strategies [7], [8]
mainly focuses on latency optimization, energy consumption
optimization, and joint optimization of latency and energy
consumption. Latency optimization aims to efficiently migrate
computation tasks to faster computing resources to meet the
requirements of time-sensitive tasks [9], [10], [11], [12],
[13], [14], [15], [16], [17]. However, these studies often
overlook the energy consumption issues of terminal devices.
Given the limited battery capacity of the terminal devices,
rapid battery drain can cause interruptions of tasks during
computation. Therefore, some researchers have proposed com-
putation offloading strategies based on energy consumption
optimization [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28]. However, such studies address concerns
about energy consumption, they can lead to relatively higher
latency, which is not very user-friendly in terms of the overall
experience. To overcome these challenges, joint optimization
of latency and energy consumption [23], [29], [30], [31], [32],
[33] has become a focus of research. This method balances
task execution latency and device energy consumption to
achieve optimal system performance. Consequently, we focus
on the research of computation offloading strategies that jointly
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optimize latency and energy consumption. However, joint
optimization of latency and energy consumption increases
the complexity of the problem, making it a challenge to
find the optimal or near-optimal solutions to obtain the
model.

Reinforcement learning is a practical method for addressing
the aforementioned problems [35], [36], [37], with its core
concept of treating the terminal device as an intelligent agent.
The primary task of this agent is to select the optimal com-
putational offloading strategy while considering both latency
and energy consumption to maximize user experience and
device performance. Researchers have explored various rein-
forcement learning methods in the field of computational
offloading decisions, including Deep Q-Networks (DQN)
and their enhancements, policy gradient methods, and Deep
Deterministic Policy Gradients (DDPG) [38]. Each of these
methods has its strengths, and the choice depends on the spe-
cific requirements of the problem. DQN is suitable for discrete
action and state spaces, offering high stability and effective-
ness, especially in cases where reward signals are well-defined.
Policy gradient methods apply to continuous action and high-
dimensional state spaces, making them capable of handling
complex parameterized policies. DDPG combines the advan-
tages of value iteration and policy gradient methods, excelling
in continuous action and state spaces with faster convergence
rates and stability. Consumer devices often require choosing
the best offloading decisions within a continuous action space
while making decisions in a high-dimensional state space.
Such offloading decisions often involve complex objective
functions and reward signals, requiring a balance between
latency and energy consumption. Double Deep Q-Network
(DDQN) performs exceptionally well in this context because it
can effectively learn and optimize policies to maximize cumu-
lative rewards while adapting to different tasks and changing
environments. Therefore, we choose to employ DDQN to
derive offloading strategies.

Considering network conditions, computational demands,
and task completion times, we use reinforcement learning
techniques to assist consumer devices in flexibly adjusting
their offloading strategies in various situations to achieve
optimal performance and efficiency. To this end, we propose a
method called ‘Computation Cost-Driven Offloading Strategy
based on Reinforcement Learning for Consumer Devices’
and evaluate its effectiveness in three scenarios. The main
contributions are as follows:
• We present a Computation Cost-Driven Offloading

Strategy based on Reinforcement Learning for time-
sensitive and energy-intensive tasks. This method enables
consumer devices to dynamically adapt their offloading
strategies in response to environmental fluctuations and
real-time task demands, aiming to optimize performance
and efficiency.

• We design a task completion time estimation method
that breaks tasks down into multiple modules and
estimates the time required for each module under
different offloading strategies. This method efficiently
estimates task completion time, ensuring a good user
experience.

II. RELATED WORK

We will discuss the research status of computation offload-
ing strategies from three perspectives: latency optimization [9],
[10], [11], [12], [13], [14], [15], [16], [17], energy consump-
tion optimization [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], and joint optimization of latency and energy
consumption [23], [29], [30], [31], [32], [33].

A. Latency Optimization

Latency optimization refers to the efficient migration of
computational tasks to faster computing resources to meet
the demands of time-sensitive tasks while ensuring that tasks
are completed within specified timeframes, thereby enhanc-
ing system performance and responsiveness [9], [10], [11].
Feng et al. [12] transformed the problem of minimizing system
latency into a mixed-integer nonlinear programming issue by
optimizing reverse offloading decisions and resource allocation
and used a distributed dual-decomposition approach to achieve
optimal resource allocation. Zhou et al. [13] comprehensively
considered the high delay risk caused by network uncertainty
and the average delay of the system, formulated the distributed
robust offloading optimization problem, and proposed a risk-
sensitive task offloading scheme. Liu and Liu [14] developed
the partitioning and offloading problem as a two-objective
optimization problem and designed a delay-priority oriented
offloading strategy to help edge nodes make offloading deci-
sions. Saleem et al. [15] explored the reduction of task
execution delay in the shared spectrum by employing a
low-complexity heuristic algorithm that combines MEC and
Device-to-Device partial computation offloading. Tang [16]
used DDQN, Dueling DQN algorithms, and the Long Short-
Term Memory network to estimate costs and introduced a deep
reinforcement learning-based offloading algorithm to minimize
latency costs and task loss. Zhao et al. [17] introduced a
caching-assisted framework and proposed a task-offloading
solution based on the DDPG task preprocessing algorithm.
However, these studies often overlook the energy consumption
of mobile devices, making them less applicable to devices with
limited battery capacity.

B. Energy Consumption Optimization

Energy consumption optimization effectively offloads com-
puting tasks from mobile devices to other computing
resources, such as cloud servers or edge servers, to reduce
device energy consumption during task execution [18], [19].
Wang and Zhu [20] formulated an optimization problem
aimed at minimizing energy consumption and offloading
costs, proposing a dynamic offloading strategy. Khune and
Pasricha [21] proposed a Q-learning-based offloading decision
method to minimize energy consumption. Zhou et al. [22]
designed a winning bid scheduling method based on a greedy
stochastic adaptive search process to determine the offloading
strategy. Chen et al. [23] introduced an advanced DQN that
incorporates a priori buffer mechanism and an expert buffer
mechanism. Fang et al. [24] considered energy consumption
and energy harvesting and proposed an online energy-saving
auction algorithm for MEC systems consisting of multiple
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servers and mobile devices. Saranya and Sasikala [25] made
computational offload decisions based on the tasks assigned
to processing, designing types of offloads such as partial
offloads, full offloads, and distributed offloads to save energy.
Cao et al. [26] considered the MEC system with auxiliary
nodes and jointly optimized the allocation of computational
and communication resources to users and additional nodes
to meet computational latency constraints while reducing
overall energy consumption. Zhou et al. [27] proposed a
joint optimization of resource allocation and task-offloading
strategy to minimize device energy consumption, solved
using a low-complexity algorithm. Huang et al. [28] com-
bined offloading and scheduling strategies, using Double
Q-learning with intervention to meet real-time task require-
ments and reduce the energy consumption of consumer
devices. Although these studies address energy consump-
tion issues, they may lead to higher latency, which is not
user-friendly.

C. Joint Optimization of Latency and Energy Consumption

The core idea of joint optimization of latency and energy
consumption is to balance task execution latency and device
energy consumption to achieve optimal system performance
and maximize efficiency. Kumar et al. [29] made real-time
offload decisions based on the requirements of the end appli-
cation, analyzed them by a fuzz-based offload controller, and
proposed a computing offload framework based on artificial
intelligence. Yuan et al. [30] proposed a DQN-based frame
aggregation and task offloading method by considering delay,
energy consumption, and throughput. Mahmoodi et al. [31]
modeled task dependencies as general topological graphs and
employed linear programming to solve the joint optimization
problem of offloading decisions, latency, and energy con-
sumption. Chen et al. [23] introduced an advanced DQN
method using the experience replay mechanism to select sam-
ples for network training, minimizing total weighted latency
and energy consumption. Truong et al. [33] employed a
three-step Actor-critical DQN method, in which the agent
interacts with the environment and accumulates experiences,
subsequently learning the optimal task-offloading strategy.
Cheng et al. [34] used an online policy gradient-based Actor-
Critic algorithm to manage state and action spaces, reducing
the need for training samples, speeding up the learning
process, and reducing server latency, energy consumption,
and costs. Wang et al. [32] proposed an intelligent task-
offloading solution using non-policy reinforcement learning
supported by sequence-to-sequence neural networks. However,
the combination of optimization of latency and energy con-
sumption increases the complexity of the problem and may
not be suitable for applications with specific latency or energy
consumption requirements.

Inspired by the above proposal, we first consider the
characteristics of tasks, network conditions, and edge server
resources. Then, we utilize the reinforcement learning tech-
nique to assist in offloading decisions of customer devices,
aiming to maximize consumer rewards and minimize compu-
tational cost and energy consumption.

Fig. 1. Computation offloading model.

III. SYSTEM MODEL

We consider a wireless cloud edge network that consists
of three types of computing nodes: customer devices, edge
servers, and central cloud, as shown in Fig. 1. There are
N customer devices and M edge servers, denoted as set
N = {1, 2, . . . ,N } for customer devices and set M =
{1, 2, . . . ,M} for edge servers. We assume that each cus-
tomer device has multiple computation-intensive tasks to be
completed and that each customer device can offload tasks to
edge servers or execute them locally. Edge servers may have
limited computing resources and may not be able to fulfill the
offloading requirements of consumer devices. In such cases,
the edge server may offload some tasks to the central cloud
or other edge servers.

A. Local Computing

The task latency computed locally T local
tk for a task tk of size

Sk depends on the computing power f local and the resources
required Dk, such as the frequency of CPU cycles. That is

T local
tk = Dtk

f local
(1)

The energy consumed is

Elocal
tk = Pc Dtk

f local
(2)

Pc is transmission energy consumption per unit time.
Integrating Eq. (1) and (2), we get the local computing cost

Clocal
tk = I t

tkT
local

tk + Ie
tk Elocal

tk (3)

I t
tk and Ie

tk are the time and energy weights of the task cost.

B. Offload Computing

The latency of offloading task tk from customer devices to
edge servers is related to the offloading ratio α, the upload rate
of the wireless network channel Ru, the computational capacity
f edgem of the edge server m, and the number of resources
required to complete the task Dtk ,

T edgem
tk = α

(
Stk

Ru
+ Dtk

f edgem

)
(4)
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The energy consumed is

Eedgem
tk = α

(
Pu Stk

Ru
+ P idle Dtk

f edgem

)
(5)

Pu and P idle are transmission energy consumption and task
processing energy consumption per unit time. Integrating
Eq. (4) and (5), we get the computational cost of the edge
server m,

Cedgem
tk = I t

tkT
edgem

tk + Ie
tk Eegdem

tk (6)

if the edge server does not have enough resources to handle
the task tk, it is offloaded to the central cloud or another edge
server. In this case, the delay of central cloud T cloud

k and other
edge server T edgei

tk is

T cloud
tk = αλ

(
Stk

Rtrans
+ Dtk

f cloud

)
(7)

T edgei
tk = αλ

(
Stk

Rtrans
+ Dtk

f edgei∈{1,...,m−1,m+1,...,M}

)
(8)

Rtrans is the channel upload rate to the central cloud or other
edge servers. f cloud is the computational capacity of the central
cloud. f edgei∈{1,...,m−1,m+1,...,M} is the computing capacity of any
server another than edge server m. λ is the proportion of tasks
offloaded from edge servers m to the central cloud or other
edge server. The energy consumed is

E−tk = αλ

(
Pu Stk

Rtrans
+ P idle Dtk

f−

)
(9)

f− represents the computational capacity of the central cloud
or edge server. Integrating Eq. (7) and (8), the computing cost
is

C−tk = I t
tkT
−

tk + Ie
tk E−tk (10)

The total cost of task-offloading is

Ccall =
N̂∑

k=1

(1− α)Clocal
tk +α(1− λ)Cserver

tk + αλC−tk (11)

We model task-offloading as an optimization problem with
the objective of minimizing the cumulative cost, which is the
sum of latency and energy consumption. Under constraints
of maximum tolerable delay and computational capacity, the
problem can be formulated as follows:

min
A,S

N̂∑
k=1

Btk
T[

Clocal
tk Cserver

tk C−tk
]T

s.t.,

C1 : Btk =
[

b1 b2 b3
]
, b− ∈ {0, 1}

C2 : Btk
T · [T local

tk T server
tk T −tk

]T
< κtk ,∀k ∈ N̂

C3 : 0 < ftk < F∗,∀k ∈ N̂ , ∗ ∈ {local, edge, cloud}

C4 :
N̂∑

k=1

ftk ≤ F∗,∀k ∈ N̂ , ∗ ∈ {local, edge, cloud} (12)

where N̂ is the number of tasks in the customer device.
A = [Bt1 , Bt2 , . . . , BtN̂ ] is the decision vector for the offload

of the task, S = [ft1, ft2 , . . . , ftN̂ ] is the allocated computing
resources, C1 indicates whether the customer device chooses
local computation or offloading to complete the task, C2
represents the constraint that the task completion time cost
should not exceed a time threshold κtk , F∗ represents the
resource threshold, C3 denotes that the allocated computing
resources should not exceed the computing resources of the
offload target, and C4 represents the total allocated computing
resources should not exceed the computing resources of the
offloading target.

Eq. (12) can be solved by finding the optimal values of the
vector of execution of the decision and the computation of the
allocation of resources. However, the feasible set and objective
function of Eq. (12) is not convex. Moreover, as the number of
users increases, the scale of Eq. (12) overgrows, making it a
hard NP problem. Instead of traditional optimization methods
to solve the NP-hard problem (12), we propose a reinforcement
learning technique to find the optimal values of A and S .

IV. PROBLEM SOLVING

A. Determining the Computation Offloading Strategy

Compared to the traditional DQN algorithm, DDQN demon-
strates higher stability and convergence speed, allowing more
efficient learning and policy optimization to maximize cumula-
tive rewards. Meanwhile, DDQN can continuously learn from
the environment, updating based on real-time observations and
reward signals. Hence, it can adapt to the dynamic changes
in the environment and task requirements, swiftly adjusting to
new conditions and scenarios based on the latest information to
make offloading decisions. Thus, we use the DDQN algorithm
to make offload computation decisions. The basic elements are
defined as follows:

State: The state space of the system consists of three parts,
including the computing capabilities of customer devices, edge
servers, and the central cloud.

Action: The system’s action space consists of task-
offloading strategies A = [Bt1 , Bt2 , . . . , BtN̂ ] and allocation of
computational resources S = [ft1, ft2 , . . . , ftN̂ ].

Reward: After taking each possible action a in state s,
the agent receives a reward R(s, a). Stable rewards can
help the agent learn optimal strategies more rapidly and
exhibit robustness across varying environmental conditions.
Our optimization objective is to minimize the total cost,
while the goal of reinforcement learning is to maximize
rewards. Hence, rewards should be inversely correlated with
the total cost. According to the above definition, costs encom-
pass processing time and resource consumption. Our goal
is to ensure timely task completion and maximise resource
utilization to enhance the return on investment for client
devices. However, to ensure that client devices can complete
latency-sensitive tasks on time, an understanding of the com-
puting capability of the offloading destination is required.
Unfortunately, this is impractical. Therefore, we design a
task completion time estimation method to assist consumer
devices in making offloading decisions, ensuring a positive
user experience. For specific calculations, please refer to
Section IV-B.
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Algorithm 1 Computation Cost-Driven Offloading Strategy

Input the size of the replay buffer, training batchsize, target
network update frequency;
Initialize the main network parameters θ and the target
network parameters θtarget;
for e ∈ {1, 2, · · · , epoch} do

Select action a using Eq. (13) based on the current
state s;

Perform action a and observe the new state s′ after
transfer and reward;

Calculate the target Q-value;
Calculate the Q-value function of the primary network;
Calculate the loss using Eq. (15);
Update the parameters of the primary network;
Copies the parameters of the primary network θ to those

of the target network θtarget at a defined update frequency;
end

Q-Value Function: DDQN utilizes the Q-value function
to evaluate the value of each state-action pair. The Q-value
function is Q(s, a; θ). The Q-value function represents the
long-term cumulative reward obtained by taking a particular
action in the current state. To stabilize the learning process,
DDQN introduces the target Q-value function Q(s, a; θtarget)

to calculate the target Q-value.

Q = Qt arg et
(
s, a; θtarget

)+
(

Q(s, a; θ)− 1

O

O∑
o=1

Q(s, a; θ)

)

(13)

Our primary and target networks utilize the same neural
network structure, including three hidden layers with 64
neurons each. Each hidden layer applies the ReLU activation
function for non-linear transformations. We use the ε-greedy
strategy to select the action, which means that we randomly
select an action with a probability of ε and select the action
with the maximum Q-value with a probability of (1-ε).

π(a|s)←
{

1− ε + ε
|A(s)| if a=arg maxaQ(s, a; θ)

ε
|A(s)| if a 	= arg maxaQ(s, a; θ)

(14)

We use Mean Squared Error to measure the difference between
the predicted values of the current and target Q-value func-
tions, denoted L(θ).

L(θ) = 1

O

O∑
o=1

(
Qo

target

(
s, a; θtarget

)− Qo(s, a; θ)
)2

(15)

O is the number of samples sampled from the experience
replay collection. The pseudocode for the above procedure is
shown in Algorithm 1.

B. Task Completion Time Estimate

To ensure a good user experience, we design a task
completion time estimation method to ensure that tasks can be
completed within a threshold. A task tk can be characterized

by H attributes, tk = {a1, a2, . . . , aH}, ah represents input data
features, computational complexity, resource requirements,
real-time constraints, and priority. To estimate the completion
time of a task, we divide tasks into two categories: simple and
complex. Simple tasks consist of a single module that cannot
be further divided, whereas complex tasks are divided into
multiple modules.

Simple tasks: By analyzing the historical data of the
features of the tasks and the completion time, we can build
models to predict the completion time of new tasks. Thus,
we employ clustering methods to classify and analyze tasks.
Specifically, we assign tasks to respective clusters based on
their similarity and then calculate the average completion
time of tasks in each cluster. This average completion time
is considered the current cluster task completion time, from
which we can obtain the completion time for new tasks t′k.
However, task features and requirements diversity can result in
tasks exhibiting nonconvex distributions in MEC. The Density-
Based Spatial Clustering of Applications with Noise algorithm
(DBSCAN) can handle nonconvex clusters and is insensitive
to data distribution. It is suitable for addressing this issue
in clustering edge computing tasks. In particular, we use
cosine similarity to measure task similarity in the DBSCAN
algorithm.

cs =
∑H

h=1 aha′h√∑H
h=1 a2

h

√∑H
h=1

(
a′h

)2
(16)

The completion time of the task Tt′k is the average comple-
tion time of all tasks Ncluster within the same cluster clusterc.

Tt′k =
1

Ncluster

Ncluster∑
c=1

Tclusterc (17)

Complex tasks: We estimate the completion time for
complex tasks by dividing them into multiple modules.
A complex task tk can be divided into n modules,
tk = {ϕ1(tk), . . . , ϕn(tk)}, where ϕî(tk) represents the
î-th module of task tk. The historical task set submit-
ted by the customer device to the edge server m is
{t1, t2, . . . , ., tk0 , . . . , tn1}, the historical tasks tk0 represented
by tk0 = {ϕ1(tk0), . . . , ϕî(tk0), . . . , ., ϕn(tk0)}. For a new task
t′k = {ϕ1(t′k), . . . , ϕî(t

′
k), . . . , ., ϕn′(t′k)}, if ϕî(t

′
k) = ϕî(tk0), then

t′k can be defined based on the modules of previous tasks.
Therefore, based on whether the modules of the new task fully
or partially exist in the modules of the historical tasks on the
server or the central cloud, the definition of the new task can
be divided into the following two cases: (i) the modules of
the new task fully exist in the modules of the historical tasks
on the edge server m, i.e., t′k = (ϕ1(t1), ϕ2(t2), . . . , ϕn(tn1)),
where ϕ1(t1) = ϕ1(t′k), ϕ2(t2) = ϕ2(t′k), . . . , ϕn(tn1) =
ϕn′(t′k); (ii) some modules of the new task partially exist
in the modules of the historical tasks on the current server,
t′k = {ϕ1(t1), ϕ2(t2), . . . , ϕî(tk), ϕî+1(t

′
k), . . . , ϕn′(t′k)}, where

ϕî+1(t
′
k), . . . , ϕn′(t′k) represent the modules only present in the

new task t′k.
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Fig. 2. Task completion time estimate (The orange, yellow, and blue bars represent the attributes of the task).

For (i), as shown in Fig. 2(a), we evaluate according to the
task completion time inference function J . For the completion
time of t′k,

Tt′k = J
(
ϕ1(t1), ϕ2(t2), . . . , ϕn(tn1)

)
(18)

If each module of the current task can be completed in parallel,

J = max{Tϕ1(tk), . . . , Tϕn′ (tk)} (19)

otherwise,

J =
n′∑

î=1

wî(tk)Tϕî
(tk) (20)

wî(t
′
k) represents the weight of the î-th module in t′k.

For (ii), as shown in Fig. 2(b), if the attribute
ϕî+1(t

′
k), . . . , ϕn′(t′k) is the same as the historical task attribute

from other servers, ϕî+1(t
′
k) = ϕn1+1(t2k), . . . , ϕn′(t′k) = ϕn(tik),

ϕn(tmk ) is the module of t′k from edge server i. Then, the
customer device completion time inference function J can be
defined as follows.

Tt′k = J
(
ϕ1(t1), ϕ2(t2), . . . , ϕn0(tn1), ϕn0+1

(
t2k

)
, . . . , ϕn

(
tmk

))
(21)

If each module of the current task can be completed in
parallel

J = max
{
Tϕ1(t1), . . . , Tϕn0

(
tn1

), Tϕn0+1
(
t2k

), . . . , Tϕn
(
tik

)} (22)

otherwise,

J = (1− β)

n0∑
î=1

wî(tk)Tϕî
(tk)+ β

n∑
î=n0+1

wî

(
tik

)
Tϕî

(
tik

)
(23)

β indicates the trust degree of the current server to other
servers, n0 indicates the number of t′k’s modules that the cur-
rent edge server (such as Edge Server m) contains, n0 + 1 ∼ n
indicates the number of t′k’s modules that other edge servers
(such as Edge Server i) contain.

Please note that if the DBSCAN algorithm classifies a
simple task as noise, the calculation of the task completion
time is

Tt′k =
Î∑

i=1

wiT i
t′k

(24)

T i
t′k

is the task completion time on edge server i. wi is the
degree of trust of the current edge server with the edge server
i. Î is the number of other edge servers.

V. EXPERIMENTAL RESULT

A. Experimental Setup

To validate the effectiveness of the proposed method, we
first analyze the rewards in the same environment settings
obtained by five methods (Proximal Policy Optimization
(PPO)-based offload strategy [32], Kullback-Leibler Proximity
(PPO_KLP)-based offload strategy [35], DDPG-based offload
strategy [38], Soft Actor-Critic (SAC)-based offload strat-
egy [39], OUR) in three scenarios to verify that our method
can achieve the lowest cost. Second, we analyze the rewards
in different environments of five baseline methods (Random,
Local, Particle [20], MEC [21], ADDQN [23], and OUR),
the latency three benchmark methods (FUV [12], FUR [12],
Greedy [22], and OUR), to verify that our method achieves
the highest rewards and incurs the minimum delay. Finally,
we assess the accuracy of seven completion time estimation
methods (Kmeans estimation, Optics estimation, Mean Shift
estimation, Analog estimation, Programmer Evaluation and
Review Technique (PERT), OUR) to verify the validity of task
completion time estimation method.

Baseline methods: The PPO-based offload strategy [32]
uses PPO to make offloading decisions. PPO [35] is a policy
optimization-based reinforcement learning algorithm designed
to improve stability by limiting the magnitude of policy
changes in each update. The PPO_KLP-based offload strategy
uses PPO_KLP to make offloading decisions. PPO_KLP [35]
is a variant of the PPO that introduces a penalty term based on
the Kullback-Leibler divergence in the optimization objective.
The DDPG-based offload strategy [38] uses DDPG to make
offload decisions. DDPG [38] is a deep reinforcement learning
algorithm based on policy gradients, particularly suitable
for problems with continuous action spaces. The SAC-based
offload strategy [39] uses SAC to make offload decisions.
SAC [39] is a deep reinforcement learning algorithm based on
the maximum entropy framework.

FUV [12] does not employ reverse offloading and instead
offloads all tasks to edge servers for execution. FUR [12]
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TABLE I
NETWORK RESOURCE

employs a reverse offloading framework to offload all tasks
to consumer devices for execution. Particle [20] treats the
state of the system as relevant variables, using the K-nearest
neighbors algorithm to quantify the neural network. MEC [21]
employs Q-learning for reward-based offloading decisions,
allowing edge devices to consider the context for meaningful
offloading and network selection. Greedy [22] uses a greedy
randomized adaptive search procedure to determine the offload
strategy. ADDQN [23] maximizes the benefits of offloading
by combining priority buffer and expert buffer mechanisms,
determining the reverse offloading strategy to the fullest extent
possible.

Parameter settings: For reward analysis and task discard
ratio analysis using three baseline methods (DDPG, PPO_KLP,
and SAC), we use environment variables consistent with those
in our study. The environment variables for the ADDQN,
Particle, and MEC methods are referenced from their settings.
In the case of delay analysis using the Greedy, FUV, and
FUR benchmark methods, the environment variables are all
based on those set in the FUR. We conduct experiments with
assigned and random sequences of 10 and 20 tasks. The
resource configurations shown in Table I. (1, 3, 1) represents
a network with one customer device, three edge servers
connected to the customer device, and one central cloud.
Similarly, (30, (20, 50, 50), 50) indicates that the resource
capacity of the customer device is 30, there are three edge
servers with resource capacities of 20, 50, and 50, and the
resource capacity of the central cloud is 50. Likewise, (30,
(20, 50, 50, 20, 30), 50) represents a configuration where the
computational resources of the customer device is 30. There
are five edge servers with resource capacities of 20, 50, 50,
20, and 30, and one central cloud with a resource capacity of
50. The assigned task sequences are presented in Table II.

B. Reward Analysis in the Same Environment Setting

1) Reward Analysis of Different Offloading Strategies for
Customer Devices in Scenario 1: Figs. 3 to 6 present an
analysis of the rewards obtained by customer devices when
employing five offloading strategies in Scenario 1.

Fig. 3 illustrates the rewards obtained by the consumer
device using different strategies when ten tasks and three edge
servers are connected to the consumer device. Fig. 3(a) shows
the rewards obtained by customer devices with different task-
offloading strategies when assigning ten tasks. SAC and PPO
show similar reward performance with little difference, while
DDPG and PPO exhibit the worst results. Fig. 3(b) presents
the rewards obtained by customer devices with different task-
offloading strategies when randomly generating the sequence
of ten tasks. It can be seen from this figure that our method’s
derived task-offloading strategy achieves the highest reward,

TABLE II
RESOURCE REQUIREMENTS AND TIME THRESHOLDS

FOR GIVEN TASK SEQUENCE

Fig. 3. Reward analysis (Computing resources: customer device, edge server,
and central cloud all have to compute resources, tasks: 10, customer devices:
1, central cloud: 1, edge servers: 3).

Fig. 4. Reward analysis (Computing resources: customer device, edge server,
and central cloud all have to compute resources, tasks: 20, customer devices:
1, central cloud: 1, edge servers: 3).

followed by PPO, SAC, and PPO_KLP, which perform simi-
larly, and DDPG performs the worst. This is because DDPG is
unsuitable for this scenario, where the performance of DDPG
is highly affected by the initial parameters of the model. Our
method is more stable from these two figures and achieves the
highest rewards compared to the other four methods.

Fig. 4 demonstrates the rewards obtained by the consumer
device using different strategies when 20 tasks and three
edge servers are connected to the consumer device. Fig. 4(a)
shows the rewards obtained by customer devices with different
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Fig. 5. Reward analysis (Computing resources: customer device, edge server,
and central cloud all have to compute resources, tasks: 10, customer devices:
1, central cloud: 1, edge servers: 5).

Fig. 6. Reward analysis (Computing resources: customer device, edge server,
and central cloud all have to compute resources, tasks: 20, customer devices:
1, central cloud: 1, edge servers: 5).

task-offloading strategies when assigning 20 tasks. From the
figure, our method’s derived task-offloading strategy achieves
the highest and fastest convergence of rewards, followed
by DDPG and PPO. Still, DDPG is more stable, and SAC
performs the worst. Fig. 4(b) presents the rewards obtained
by customer devices with different task-offloading strategies
when randomly generating the sequence of 20 tasks. It can
be observed from this figure that our method’s derived task-
offloading strategy achieves the highest reward, followed by
PPO and SAC, with DDPG performing the worst. These two
figures indicate that our method is more stable and achieves
the highest rewards compared to the other four methods.

Fig. 5 presents the rewards obtained by the consumer device
using different strategies when ten tasks and five edge servers
are connected to the consumer device. Fig. 5(a) illustrates
the rewards obtained by customer devices with different task-
offloading strategies when assigning ten tasks. It is evident
from this figure that our method’s derived task-offloading strat-
egy achieves the highest and most stable rewards, with DDPG
and PPO yielding negative rewards and performing the worst.
Fig. 5(b) shows the rewards obtained by customer devices with
different task-offloading strategies when randomly generating
the sequence of 10 tasks. It can be seen from this figure
that our method’s derived task-offloading strategy obtains the
highest reward, followed by DDPG and PPO, with SAC and
PPO_KLP performing similarly. Based on these two figures,
our method is more stable and achieves the highest rewards
compared to the other four methods.

Fig. 6 shows the rewards obtained by the consumer device
using different strategies when 20 tasks and five edge servers
are connected to the consumer device. Fig. 6(a) presents
the rewards obtained by customer devices with different
task-offloading strategies when assigning 20 tasks. It is evident

Fig. 7. Reward analysis (Computing resources: no local computing resources,
tasks: 10, customer devices: 1, central cloud: 1, edge servers: 3).

from this figure that our method’s derived task-offloading
strategy achieves the highest and most stable rewards, with
DDPG following and PPO exhibiting the largest reward
fluctuations, and thus performing the worst. Fig. 6(b) shows
the rewards obtained by customer devices with different task-
offloading strategies when randomly generating the sequence
of 20 tasks. It can be observed from this figure that our
method’s derived task-offloading strategy obtains the highest
reward, with SAC and PPO_KLP performing similarly and
PPO and DDPG yielding negative rewards and performing the
worst. These two figures indicate that our method is more
stable and achieves the highest rewards compared to the other
four methods.

In summary, when consumer devices, edge servers, and
cloud servers have computing resources available, the com-
puted offloading strategies derived from our method exhibit
better stability and yield higher rewards than the four baseline
methods.

2) Reward Analysis of Different Offloading Strategies for
Customer Devices in Scenario 2: Figs. 7 to 9 depict the
rewards obtained by the customer device using different
algorithms to derive task-offloading strategies in Scenario 2.

Fig. 7 illustrates the rewards obtained by the consumer
device using different strategies when ten tasks and three
edge servers are connected to the consumer device. Fig. 7(a)
illustrates the rewards of different task-offloading strategies
when ten tasks are assigned. Our method yields the highest
reward, while DDPG and PPO achieve approximately −10 and
−50 rewards, respectively. SAC and PPO_KLP exhibit varying
rewards that fluctuate between −30 and 0, indicating that our
method results in the highest task completion rate. Fig. 7(b)
shows the rewards obtained by different task-offloading strate-
gies when ten tasks are randomly generated. It can be seen that
our method achieves the highest reward, followed by SAC,
while PPO_KLP shows the least effective performance. This
reflects that our method leads to the highest task completion
quantity. These two figures reveal that our method is more
stable and achieves the highest reward and task completion
rate compared to the other four methods.

Fig. 8 presents the rewards obtained by the consumer device
using different strategies when 20 tasks and three edge servers
are connected to the consumer device. Fig. 8(a) shows the
rewards of different task-offloading strategies when 20 tasks
are assigned. Our method yields the highest, fastest converg-
ing, and most stable rewards, followed by DDPG and PPO,
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Fig. 8. Reward analysis (Computing resources: no local computing resources,
tasks: 20, customer devices: 1, central cloud: 1, edge servers: 3).

Fig. 9. Reward analysis (Computing resources: no local computing resources,
tasks: 10, customer devices: 1, central cloud: 1, edge servers: 5).

with DDPG exhibiting more stability and SAC showing the
least effective performance. Fig. 8(b) illustrates the rewards
obtained by different task-offloading strategies when 20 tasks
are randomly generated. Our method achieves the highest
reward, followed by SAC, while PPO demonstrates the least
effective performance. This is because SAC and PPO are
not suitable for this scenario, and the performance is heavily
affected by the initial parameters of the model. These two
figures indicate that our method is more stable and achieves
the highest reward and task completion rate compared to the
other four methods.

Fig. 9 displays the rewards obtained by the consumer device
using different strategies when ten tasks and five edge servers
are connected to the consumer device. Fig. 9(a) shows the
rewards of different task-offloading strategies when assigned
ten tasks. Our method yields the highest and most stable
rewards, followed by PPO_KLP, while PPO and DDPG
achieve negative rewards with the least effective performance.
Fig. 9(b) illustrates the rewards obtained by different task-
offloading strategies when ten tasks are randomly generated.
Our method achieves the highest reward, followed by DDPG,
with SAC and PPO_KLP exhibiting similar performance and
PPO demonstrating the least effective performance. These two
figures reveal that our method is more stable and achieves the
highest reward compared to the other four methods.

Fig. 10 presents the rewards obtained by the consumer
device using different strategies when 20 tasks and five edge
servers are connected to the consumer device. Fig. 10(a)
shows the rewards of different task-offloading strategies
when 20 tasks are assigned. Our method yields the highest
and most stable rewards, followed by PPO and DDPG,
while PPO_KLP demonstrates the least effective performance.
Fig. 10(b) illustrates the rewards obtained by different task-
offloading strategies when 20 tasks are randomly generated.

Fig. 10. Reward analysis (Computing resources: no local computing
resources, tasks: 20, customer devices: 1, central cloud: 1, edge servers: 5).

Our method achieves the highest and most stable reward,
followed by SAC, and PPO_KLP demonstrates the least effec-
tive performance. This is because PPO_KLP is not suitable
for this scenario, causing performance to be severely affected
by the initial parameters. These two figures indicate that
our method is more stable and achieves the highest reward
compared to the other four methods.

In summary, consumer devices lack computational
resources, while edge servers and cloud servers possess
computational resources. The computational offloading
strategy derived by our method outperforms the four baseline
methods by achieving higher and more stable rewards.

3) Analysis of Reward for Different Offloading Strategies
in Scenario 3: Fig. 11 to 14 analyze the rewards obtained by
customer devices using different methods for deriving task-
offloading strategies in Scenario 3.

Fig. 11 illustrates the rewards obtained by the consumer
device using different strategies when ten tasks and three edge
servers are connected to the consumer device. Fig. 11(a) shows
the rewards of different task-offloading strategies for the 10
assigned tasks. From this figure, it can be seen that our method
achieves higher and more stable rewards, followed by PPO
and DDPG, while PPO_KLP performs the worst. Fig. 11(b)
presents the rewards of different task-offloading strategies
for the randomly generated 10 tasks. It can be seen that
our method and PPO produce the highest rewards, followed
by DDPG, while PPO_KLP performs the worst. These two
figures demonstrate that our method outperforms the other four
stability and reward acquisition methods.

Fig. 12 shows the rewards obtained by the consumer device
using different strategies when 20 tasks and three edge servers
are connected to the consumer device. Fig. 12(a) illustrates
the rewards of different task-offloading strategies for the 20
assigned tasks. Our method achieves the highest and fastest
converging rewards, followed by DDPG, while PPO performs
the worst. Fig. 12(b) demonstrates the rewards of different
task-offloading strategies for the randomly generated 20 tasks.
It can be seen that our method yields the highest rewards,
followed by PPO, while DDPG performs the worst. These two
figures indicate that our method is more stable and acquires
higher rewards than the other four methods.

Fig. 13 displays the rewards obtained by the consumer
device using different strategies when 10 tasks and five edge
servers are connected to the consumer device. Fig. 13(a) shows
the rewards of different task-offloading strategies for the 10

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on May 09,2024 at 09:19:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: COMPUTATION COST-DRIVEN OFFLOADING STRATEGY BASED ON REINFORCEMENT LEARNING 4129

Fig. 11. Reward analysis (Computing resources: no computing resources on
individual edge servers, tasks: 10, customer devices: 1, central cloud: 1, edge
servers: 3).

Fig. 12. Reward analysis (Computing resources: no computing resources
on individual edge servers, number of tasks: 20, customer devices: 1, central
cloud: 1, edge servers: 3).

Fig. 13. Reward analysis (Computing resources: no computing resources
on individual edge servers, number of tasks: 10, customer devices: 1, central
cloud: 1, edge servers: 5).

assigned tasks. Our method achieves the highest and most
stable rewards, followed by DDPG, while SAC and PPO_KLP
perform similarly and PPO performs the worst. Fig. 13(b)
presents the rewards of different task-offloading strategies for
the 10 randomly generated tasks. Our method achieves the
most stable rewards, followed by DDPG, while SAC and
PPO_KLP perform similarly. These two figures demonstrate
that our method is more stable and acquires higher rewards
than the other four methods.

Fig. 14 displays the rewards obtained by the consumer
device using different strategies when 20 tasks and five edge
servers are connected to the consumer device. Fig. 14(a)
illustrates the rewards of different task-offloading strategies
for the 20 assigned tasks. Our method achieves the highest
and most stable rewards, followed by SAC and PPO_KLP,
with DDPG performing slightly worse and PPO and DDPG
performing the worst. Fig. 14(b) shows the rewards of dif-
ferent task-offloading strategies for the randomly generated
20 tasks. It can be seen that our method yields the highest
rewards, followed by DDPG, while PPO performs the worst.
This is because PPO_KLP is not suitable for this scenario,

Fig. 14. Reward analysis (Computing resources: no computing resources
on individual edge servers, number of tasks: 20, customer devices: 1, central
cloud: 1, edge servers: 5).

Fig. 15. Reward analysis in the same environment settings.

which causes performance to be severely affected by the initial
parameters. These two figures indicate that our method is more
stable and acquires higher rewards than the other four methods.
From this, it can be seen that similar to the previous two
scenarios, our method exhibits higher rewards in this scenario
than the four baseline methods. Additionally, there is less
fluctuation in rewards during the training process, indicating
a more stable performance relative to the baselines.

In conclusion, analyzing the rewards obtained by the cus-
tomer devices in the three extreme scenarios, it is evident that
our method achieves the highest and most stable rewards.

C. Reward Analysis and Latency Analysis in the Different
Environment Setting

Fig. 15 illustrates the evolution of rewards with increasing
episodes for six methods (Random, Local, ADDQN, Partial,
MCE, and OUR). ‘Random’ indicates that the offload strategy
is selected at random. ‘Local’ means that all tasks are com-
pleted locally. This figure shows that the cumulative reward
obtained by the six offloading strategies gradually converges
with the increase in episodes. OUR achieves the highest
cumulative reward, significantly outperforming the other five
offloading strategies. This validates the effectiveness of our
method.

Fig. 16 shows the variation of task-offloading latency for
four strategies (Greedy, FUR, FUV, and OUR) as the task
quantity increases. Due to significant differences in latency
among the four offloading strategies, we present experimental
results for the original, scaled, and locally scaled graphs.
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Fig. 16. Latency analysis.

TABLE III
TASK COMPLETION STATUS

From Fig. 16(a), it can be observed that the latency for four
offloading strategies increases with increased task quantity.
Fig. 16(b) reveals that among the four offloading strategies,
OUR performs the best, followed by Greedy, and FUR exhibits
the maximum latency. Taking the number of tasks as 45,000,
compared with FUR, the latency of OUR is reduced by
28,327.50, and compared with Greedy, the latency of OUR is
reduced by 47.64. Thus, it can verify the validity of OUR.

D. Analysis of Task Completion Status and Completion Time
Estimation

Table III displays the status of task completion and the
average rewards for five computational offloading strategies
in Scenario 1 after 100 training epochs. These strategies are
evaluated based on 20 randomly generated tasks. ‘Timely’
indicates tasks are completed within the specified time
threshold, ensuring a satisfactory user experience. ‘Timeout’
indicates that task completion times slightly exceed the time
threshold, causing some impact on the user experience but
not severely. ‘Discard’ indicates that consumer devices have
been abandoned and do not process tasks. The table shows
that our derived computation offloading strategy achieves the
highest task completion rate and the lowest task discard
ratio, a significant improvement compared to the four baseline
methods. This performance can be attributed to our task
completion time estimation method. The PPO_KLP strategy
has the second highest task completion rate but a significantly
higher task discard ratio of 42.5%. Compared to the PPO_KLP
method, the task discard ratio of our method is reduced by
25%.

Table IV shows the estimated completion time for the
new task. ‘Time’ indicates the official completion time of
the new task. It can be seen from the table that compared

TABLE IV
COMPLETION TIME ESTIMATION

with Kmeans, Optics, and Mean Shift, DBSCAN has the
highest estimation accuracy for simple tasks, and the error
is only 0.13 compared with the official completion time. For
complex tasks, compared with the three benchmark methods
(Analog estimation, Mean estimation, PERT estimation), the
proposed method has the highest estimation accuracy, and the
minimum mean error is only 0.69 ((15-14.14+17.27-17+5-
4.06)/4=0.69). In conclusion, the validity of our proposed
completion time estimation method can be verified.

VI. CONCLUSION

Researches on computation offloading strategies for time-
sensitive and compute-intensive tasks have become crucial
to improving the performance of consumer devices. By
considering three factors (network conditions, computational
demands, and task completion times) and using reinforcement
learning algorithms, we propose a ‘Computation Cost-driven
Offloading Strategy based on Reinforcement Learning for
Consumer Devices’ to optimize resource utilization, reduce
latency, and meet task requirements. Detailed experimental
results validate the effectiveness of the proposed method. In
future research, we will strive to refine further computation
offloading strategies for customer devices to meet the evolving
demands of edge computing and facilitate its widespread
adoption across various industries.
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