
Computer Networks 252 (2024) 110665

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Multi-agent DRL for edge computing: A real-time proportional compute
offloading✩

Kunkun Jia a, Hui Xia a,∗, Rui Zhang a, Yue Sun a, Kai Wang b

a College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
b School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264200, China

A R T I C L E I N F O

Keywords:
Computation offloading
Edge computing
Deep reinforcement learning
Orthogonal frequency division multiple-access

A B S T R A C T

In the Industrial Internet of Things, devices with limited computing power and energy storage often rely on
offloading tasks to edge servers for processing. However, existing methods are plagued by the high cost of
device communication and unstable training processes. Consequently, Deep reinforcement learning (DRL) has
emerged as a promising solution to tackle the computation offloading problem. In this paper, we propose
a framework called multi-agent twin delayed shared deep deterministic policy gradient algorithm (MASTD3)
based on DRL. Firstly, we formulate the task offloading conundrum as a long-term optimization problem, which
aids in mitigating the challenge of deciding between local or remote task execution by a device, leading to more
effective task offloading management. Secondly, we enhance MASTD3 by introducing a priority experience
replay buffer mechanism and a model sample replay buffer mechanism, thus improving sample utilization
and overcoming the cold-start problem associated with long-term optimization. Moreover, we refine the actor-
critic structure, enabling all agents to share the same critic network. This modification accelerates convergence
speed during the training process and reduces computational costs during runtime. Finally, experimental results
demonstrate that MASTD3 effectively addresses the proportional offloading problem, which is optimized by
44.32%, 29.26%, and 17.47% compared to DDPQN, MADDPG, and FLoadNet.
1. Introduction

The Industrial Internet of Things (IIoT) stands as a transformative
technology, ushering in substantial changes within the realms of pro-
duction and manufacturing [1–3]. Offering flexibility and enhanced
agents, IIoT empowers devices with unprecedented availability [4].
However, as its application proliferates, several challenges have be-
gun to surface. Many IIoT terminal devices grapple with inadequate
computing prowess and limited energy reserves, presenting hurdles in
meeting the pressing demands of industrial production, particularly in
real-time processing and handling large-scale data [5,6]. Edge comput-
ing serves as a remedy, circumventing the constraints of conventional
cloud computing by decentralizing computational capabilities to the
network’s periphery, thereby curtailing data transmission latency [7]
(see Fig. 1).

Hence, we propose the integration of edge computing to miti-
gate potential data latency and bandwidth constraints encountered by
the IIoT, thereby enhancing the efficient utilization of computational
resources.

✩ This research is supported by the National Natural Science Foundation of China (NSFC) under grant number 62172377, the Taishan Scholars Program of
Shandong province under grant number tsqn202312102, and the Startup Research Foundation for Distinguished Scholars under grant number 202112016.
∗ Corresponding author.
E-mail address: xiahui@ouc.edu.cn (H. Xia).

While edge-based computing offloading methods hold the poten-
tial to augment user computing capabilities notably, it is imperative
to acknowledge the finite nature of hardware resources within edge
servers [8]. The simultaneous offloading of tasks by numerous users
may surpass the connection bandwidth of the edge server, consequently
prolonging task response times. Hence, the pivotal question emerges:
How can we devise an efficacious offloading strategy to discern which
task segments should be directed towards the edge server?

In the realm of computational offloading within mobile edge com-
puting, selecting an appropriate offloading strategy is a persistent and
pivotal challenge [9]. Currently, existing offloading strategies predom-
inantly fall into two categories: those rooted in traditional methodolo-
gies and those based on deep reinforcement learning (DRL).

Traditional computational offloading methods are usually rule-
based or empirical and use static modeling methods such as queuing
models or non-cooperative games [10,11], which focus on a single
element only and lack the ability to consider multiple factors compre-
hensively. They perform poorly when facing real-time, fast-changing
https://doi.org/10.1016/j.comnet.2024.110665
Received 15 April 2024; Received in revised form 14 June 2024; Accepted 17 July
vailable online 25 July 2024
389-1286/© 2024 Elsevier B.V. All rights are reserved , including those for text and
2024

 data mining , AI training , and similar technologies.

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:xiahui@ouc.edu.cn
https://doi.org/10.1016/j.comnet.2024.110665
https://doi.org/10.1016/j.comnet.2024.110665
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110665&domain=pdf

K. Jia et al. Computer Networks 252 (2024) 110665
Fig. 1. Explanation of computational offloading. Within an ellipse, users have the ability to reach the respective base station, thereby transferring a segment of the ongoing
application to one of them.
computational offloading decision problems [12]. Therefore, we focus
on DRL-based computational offloading and categorize it into single-
agent DRL (SADRL) and multi-agent DRL (MADRL). DRL [13,14] is
characterized by self-learning, adaptability, and global search capabil-
ity, which effectively solves the shortcomings of heuristic algorithms.
Computational offloading based on DRL can be further categorized
into SADRL computational offloading and MADRL computational of-
floading. Compared to SADRL, the learning environment provided by
MADRL is inherently unstable.

However, SADRL is difficult to scale in a huge state and action
space [15]. In MADRL, there may be cooperation or competition be-
tween agents [16], and SADRL is not suitable for such interactions.
Therefore, there is a complex interaction process between multiple
agents. When all the agents are adapting their strategies, the stability
of the environment is affected, which makes the convergence of the
training less clear. Therefore, it is important to design a mechanism
that can adaptively update its own strategy to ensure coordination and
cooperation among multiple agents. In addition, in the environment
of a multi-agent system, due to the lack of comprehensive information
sharing and centralized control mechanisms, each agent can only make
decisions based on its own local data without knowing anything about
the behavioral patterns and current states of the other agents, and
thus the development of an efficient learning framework becomes
particularly important.

This paper delves into the execution of combined task division
and power management for multi-agent partial offloading within an
edge computing network, which includes various IIoT devices and edge
servers [17]. As Fig. 1 shows, each IIoT device partitions computing
tasks into multiple sub-tasks based on the available communication and
computing resources of edge servers, the computing resources of IIoT
devices, and the task requirements, and then determines the transmis-
sion power for transmitting sub-tasks to edge servers. Next, the IIoT
device and the edge server work together to execute subtasks aimed at
reducing the latency and energy consumption of the execution while
strictly following the latency and energy consumption limits of the
tasks. We first model this problem as a long-term optimization problem
for multiple agents [18]. Then, we propose a multi-agent twin de-
layed shared deep deterministic policy gradient algorithm (MASTD3),
discussing offloading decisions for each IIoT device, including task par-
titioning strategies and transmission power strategies, to optimize task
offloading policies. MASTD3 not only considers offloading decisions but
also considers the proportion of task offloading. To improve algorithm
efficiency, we introduce prioritized experience replay [19] and model
sample buffer mechanisms to enhance training efficiency and stability,
increase sample utilization, and overcome cold start issues, improving
system efficiency and availability. We then improve the actor-critic
structure of MASTD3, with all agents sharing the same critic network,
accelerating convergence during training and reducing computational
costs during operation.
2
In summary, this paper contributes the following:

1. In order to minimize mobile device runtime and energy use, we
need to clarify whether offloading should be done and which
computing resources should be allocated to the offloading task
of the Mobile edge servers (MES). Given the computational
power and communication bandwidth of the device, the issue of
computational offloading is structured as a problem of long-term
optimization.

2. Based on the real-time requirements and large-scale data pro-
cessing needs of IIoT, we construct a smart lightweight task
offloading framework that fully considers issues such as the self-
ishness of IIoT terminal devices, limited computing bandwidth,
and low energy storage, which is suitable for IIoT deployment
and applications.

3. We propose MASTD3 and according to the randomness of in-
put state information, we correspondingly construct a network
structure to address how to determine offloading decisions and
proportions. MASTD3 considers the long-term optimization of
task offloading to balance real-time performance and energy
efficiency.

4. Numerous experimental findings have shown the algorithm’s
effective convergence. Simulation results show that compared
to other traditional strategies such as no offloading strategy,
random offloading strategy, or full offloading strategy, the al-
gorithm has fast convergence and stable performance, providing
higher performance and efficiency for IIoT applications.

The subsequent chapters of this paper are structured in this manner:
Section 2 presents pertinent research in the field of computational
offloading and DRL; Section 3 describes the problem studied in this
paper and establishes the corresponding mathematical model; Section 4
presents the MASTD3; Section 5 validates the performance of our
algorithm under various scenarios; finally, Section 6 wraps up and
explores prospective paths.

2. Related work

In this section, we reviewed the current state of research in DRL-
based computational offloading schemes.

2.1. Single-agent deep reinforcement learning computational offloading sce-
narios

Huang et al. [20] implemented a binary-based task offloading de-
cision, utilizing a DRL-based online offloading framework (DROO) to
optimize task offloading and resource allocation in mobile edge com-
puting networks. Moreover, [21,22] focused on single-agent wirelessly
powered mobile edge computing (MEC) systems. Zhang et al. [21] pro-
posed the task offloading decision. To maximize the total computation
rate by mastering the near-optimal Wireless power transfer duration

K. Jia et al. Computer Networks 252 (2024) 110665
Fig. 2. Synopsis of the System. During every time interval, a MD breaks down an application into several separate parts. It then employs MASTD3 to determine the target server
and allocation proportions, continuously updating network parameters using batch gradient descent.
through DRL, addressing the challenge of energy shortage and compu-
tational power limitations of IIoT nodes. Similarly, Wang et al. [22]
proposed a joint energy and task allocation design, taking into account
energy and task causality constraints in wireless-operated mobile edge
computing systems. This design aimed to reduce the overall transmis-
sion energy consumption while ensuring the successful execution of
tasks by users. Under the MEC system, this approach enabled the mobile
device (MD) to select the device, power of transmission, and offload
rate under unknown circumstances.

2.2. Multi-agent deep reinforcement learning computational offloading sce-
narios

The combined challenge of dividing tasks and distributing resources
in multi-user, multi-server systems has been acknowledged for its com-
plexity [23], especially in light of the diverse nature and behavior
of network resources. Xiao et al. [24] proposed a mobile offloading
scheme based on DRL, enabling the MD to autonomously select edge
servers, determine offloading rates, and adjust transmission power to
enhance its utility while mitigating interference and jamming. Gao
et al. [25] introduced a decentralized approach using the attention-
weighted recursive Multi-agent Actor Family Critic (ARMAAC) in a
vast, hybrid, cooperative, and competitive environment for mobile edge
computing. The method showcased enhanced proficiency in forecasting
the future conditions of edge servers in terms of dynamic resource
distribution. Heydari et al. [26] tackled a scenario of non-cooperative
offloading within a system that includes various MDs and edge devices.
The goal was to create an ideal offloading strategy aimed at reducing
the rates of task loss and delay in execution, independent of pre-existing
understanding of task arrival models and channel features. Addition-
ally, [27,28] presented an innovative algorithm based on imitation
learning for task offloading. Under this method, every MD had the
ability to replicate an expert’s strategy for delegating tasks, even in
the absence of comprehensive information. Baek et al. [29] formalized
the problem as a gaming problem and proposed an actor-critic rein-
forcement learning framework called FLoadNet, but the complexity and
communication overhead may increase significantly as the network size
increases.

To address these challenges, we propose MASTD3, designed to
efficiently tackle the computational offloading problem posed by multi-
agent bodies. Our approach integrates a prioritized replay buffer and a
multi-agent network. Through these innovative designs, we anticipate
enhancing the performance and stability of the algorithm.
3
Table 1
Notations used in our formulation.

Notation Description

ℎ𝑢𝑙 Channel fading coefficients for uplinks
𝑁0 , 𝐵 Noise power and total bandwidth
𝑔𝑢𝑙 Target BER for uplink
𝛽𝑙 Path loss index
, Total input data bytes and total load
𝜔 Number of clock cycles per byte cycle/byte (cpb) for

microprocessor execution
𝑥𝑖𝑗 , 𝑦𝑖𝑗 Target server index and target ratio
𝑝𝑦𝑖𝑗 Percentage of applications 𝑆𝑖𝑗 that have been

uninstalled to the edge server 𝐸𝑥𝑖𝑗
𝑓 𝑙𝑜𝑐
𝑖𝑗 local computing power

𝑒𝑙 Energy consumption per byte
𝑡𝑙𝑜𝑐𝑞 local queuing delay
𝑓𝑚𝑒𝑐
𝑥𝑖𝑗

𝐸𝑥𝑖𝑗 computing power
𝑒𝑟 Server energy consumption per byte
𝑡𝑚𝑒𝑐𝑞 Remote queuing delay
𝜆, 𝛽 Balancing the weight of latency and energy consumption
𝛾 Diminishing reward
𝐾 Episode
𝐷 replay buffer size
𝑚 Mini-batch size
𝑓 Update network weight
𝜀 Greed index

3. Preliminary

This part presents the problem model being examined, encompass-
ing a network model, an application model, a local execution model,
and a remote execution model. Following this, we outline the issue of
long-term optimization being analyzed.

3.1. Network model

Within the existing Mobile Edge Computing framework, the edge
server takes charge of managing resources and virtualizing via virtual
machines, whereas the network’s implementation depends on orthog-
onal frequency division multiple access. It is assumed that the overall
bandwidth 𝐵 is divided among  subcarriers, with the present count
of subcarriers indicated as 𝑘 ∈  = {1, 2,… , 𝑁}. Echoing other
research, numerous applications demonstrate minimal response times
to computational outcomes that are significantly less than the size of
the input data. As a result, our focus is exclusively on the network’s
uplink transmission duration, ignoring the downlink transmission time.
Representing 𝑝 as the MD’s transmission capability, it is presumed that
𝑢

K. Jia et al. Computer Networks 252 (2024) 110665
Fig. 3. The framework of the MASTD3 approach.
each user has a zero mean and variance for the extra Gaussian white
noise 𝜎2, maintaining uniform variances. Consequently, it is possible
to ascertain the maximum achievable rate (in bits per second) for the
uplink across an additive white Gaussian noise channel as

𝑟𝑢𝑙 = 𝑘 𝐵
𝑁

log

(

1 +
𝑝𝑢||ℎ𝑢𝑙||

2

𝛤
(

𝑔𝑢𝑙
)

𝑑𝛽𝑙𝑁0

)

, (1)

where 𝑑 represents the gap between the server and MD, 𝑁0 denotes the
power of noise, 𝛽𝑙 is the exponent for path loss, ℎ𝑢𝑙 is the coefficient
for channel attenuation in the uplink, and 𝑔𝑢𝑙 indicates the target—the
uplink’s Bit Error Rate (BER).

3.2. Application model

At every time interval 𝑡, the MD produces an application  that
demands significant computing power. The set  can be divisible into
various tasks, denoted as {𝑐1, 𝑐2,… , 𝑐𝑛}, which are independent of each
other (i.e., fine-grained partitioning). Every component has the capa-
bility to run independently on-site or be transferred to an edge server.
Take, for example, a real-time monitoring system that concurrently
examines data from multiple sensor devices, where the information
produced by each sensor operates independently. Consequently, the
surveillance system is divisible into various autonomous functions, each
tasked with the analysis of data from a distinct sensor unit. By assigning
each task to handle real-time data from the same sensor device, the
system’s resources are utilized more efficiently, thereby enhancing the
efficiency of real-time monitoring. This task decomposition approach
optimizes the processing and analysis of real-time data in IIoT systems.

The application’s workload is measured by the input data’s size,
labeled as  , and the aggregate byte count of the input data as .
With a specified value of , it is possible to compute  = 𝜔, with 𝜔
symbolizing the CPU cycles/byte(cpb), denoting the computation’s clock
cycle count by the microprocessor. The variable 𝜔 varies based on the
application’s characteristics, shaped by elements like the intricacy of
time and space. As a result, the byte ratio for each task, indicated as
{𝑝1,… , 𝑝𝑛},

∑𝑛
𝑖=1 𝑝𝑖 = 1, can be ascertained by the byte count per task.

3.3. Local and remote execution model

Maintaining generality, our focus remains on latency and energy
usage as the key metrics. The application  is segmented into multiple
distinct tasks {𝑐1, 𝑐2,… , 𝑐𝑛}, for calculating {𝑝1,… , 𝑝𝑛},

∑𝑛
𝑖=1 𝑝𝑖 = 1.

Subsequently, we split the tasks into two segments to ascertain their
respective proportions. The workload carried out on the server or
local device is represented as {(𝐴1, 𝐵1), (𝐴2, 𝐵2),… , (𝐴𝑁 , 𝐵𝑁)}, where
regarding 𝐴𝑖 + 𝐵𝑖 = 1. Suppose the set of users is {𝑈1, 𝑈2,… , 𝑈𝑍},
the configuration of edge servers is  = {𝐸1, 𝐸2,… , 𝐸𝑀}, and time
 is partitioned into {𝑡1, 𝑡2,… , 𝑡𝑠}. The set 𝑈𝑖 is required to handle a
unique application 𝑆 during each interval 𝑡 . If the application 𝑆
𝑖𝑗 𝑗 𝑖𝑗

4
is not created, set 𝑖𝑗 = 0. Define 𝑥𝑖𝑗 as the target server’s index,
and 𝑦𝑖𝑗 as the index for the target ratio. Subsequently, 𝑃𝑦𝑖𝑗 denotes
the proportion of applications 𝑆𝑖𝑗 transferred to the edge server 𝐸𝑥𝑖𝑗 ,
where 𝑥𝑖𝑗 = {1, 2,… ,𝑀}, and 𝑦𝑖𝑗 = {1, 2,… , 𝑁}. This research reveals
that the execution of the application involves two concurrent elements:
execution on-site and execution remotely. For every application, our
assessment focuses on two key metrics: the time delay and the energy
consumption.

3.3.1. Local execution
The model for local execution is quite direct, concentrating exclu-

sively on the delay in local computation and energy usage. Conse-
quently, for a user denoted as 𝑈𝑖 in the time slot 𝑡𝑗 , the time slot 𝑇 𝑙𝑜𝑐

𝑖𝑗
and the energy usage 𝐸𝑙𝑜𝑐

𝑖𝑗 for the execution at a local level are

𝑇 𝑙𝑜𝑐
𝑖𝑗 = 𝐷𝑙𝑜𝑐

𝑖𝑗 + 𝑡𝑙𝑜𝑐𝑞 =
𝑤𝑖𝑗𝑄𝑦𝑖𝑗

𝑓 𝑙𝑜𝑐
𝑖𝑗

+ 𝑡𝑙𝑜𝑐𝑞 , (2)

and

𝐸𝑙𝑜𝑐
𝑖𝑗 = 𝑒𝑙𝑖𝑗𝑄𝑦𝑖𝑗 , (3)

where 𝑓 𝑙𝑜𝑐
𝑖𝑗 represents the local computational capacity, 𝑒𝑙 denotes the

energy usage per byte, 𝑡𝑙𝑜𝑐𝑞 indicates the delay in local queuing, and 𝑖𝑗
denotes the input size.

3.3.2. Remote execution
Edge servers employ a far more intricate remote execution approach

compared to MDs. This complexity arises from the necessity to consider
data transfer latency in the network, particularly for applications with
large data sizes. In practice, computation latency, computation energy
consumption, and queuing delays are generally much smaller for edge
servers than for MDs. Consequently, we can compute the computation
delay 𝑇 𝑚𝑒𝑐

𝑖𝑗 and energy consumption 𝐸𝑚𝑒𝑐
𝑖𝑗 as follows

𝑇 𝑚𝑒𝑐
𝑖𝑗 = 𝐷𝑚𝑒𝑐

𝑖𝑗 + 𝑡𝑚𝑒𝑐𝑞 =
𝜔𝑖𝑗𝑃𝑦𝑖𝑗

𝑓𝑚𝑒𝑐
𝑖𝑗

+ 𝑡𝑚𝑒𝑐𝑞 +
𝑖𝑗𝑃𝑦𝑖𝑗

𝑟(𝑖𝑗)𝑢𝑙

, (4)

and

𝐸𝑚𝑒𝑐
𝑖𝑗 = 𝑒𝑟𝑖𝑗𝑃𝑦𝑖𝑗 , (5)

where 𝑓𝑚𝑒𝑐
𝑥𝑖𝑗

represents the edge server’s computational capacity 𝐸𝑚𝑒𝑐
𝑥𝑖𝑗

, 𝑒𝑟
denotes the server’s energy usage per byte, and 𝑡𝑚𝑒𝑐𝑞 signifies the delay
in remote queuing.

Summing up we can get the total energy consumption as

𝐸𝑡𝑜𝑡𝑎𝑙
𝑖𝑗 = 𝐸𝑚𝑒𝑐

𝑖𝑗 + 𝐸𝑙𝑜𝑐
𝑖𝑗 . (6)

By combining the assessments of the previously mentioned models, we
determine the combined weighted sum of delay and energy consump-
tion as follows

𝑊 = 𝜆max
(

𝑇 𝑚𝑒𝑐 , 𝑇 𝑙𝑜𝑐
)

+ 𝛽𝐸𝑡𝑜𝑡𝑎𝑙 , (7)
𝑖𝑗 𝑖𝑗 𝑖𝑗 𝑖𝑗

K. Jia et al.

l

Computer Networks 252 (2024) 110665
where 𝜆 and 𝛽 represent the balancing factors for delay and energy
usage, with 𝜆, 𝛽 ∈ (0, 1). In practice, users typically prioritize lower
atency, so we prefer to assign a larger value to 𝜆 than to 𝛽.

3.4. Problem formulation

After simulating the operation of an individual application, our
attention now turns to the deployment of multiple applications, as
depicted in Fig. 2. The duration  is segmented into intervals {𝑡1, 𝑡2,… ,
𝑡𝑠}. In every time interval 𝑡𝑗 , each user 𝑈𝑖 on the MD is required to
manage a distinct application 𝑆𝑖𝑗 . We aim to ascertain the ideal values
for 𝑥𝑖𝑗 and 𝑦𝑖𝑗 . Consequently, issue 1 is as follows

1 ∶ min
∑

𝑡𝑗∈

[

𝜆max
(

𝑇 𝑚𝑒𝑐
𝑖𝑗 , 𝑇 𝑙𝑜𝑐

𝑖𝑗

)

+ 𝛽𝐸𝑡𝑜𝑡𝑎𝑙
𝑖𝑗

]

s.t. 𝑓𝑚𝑒𝑐
𝑥𝑖𝑗

≤ 𝑚𝑒𝑐
𝑥𝑖𝑗

, 𝑓 𝑙𝑜𝑐
𝑥𝑖𝑗

≤  𝑙𝑜𝑐
𝑖

𝑟(𝑖𝑗)𝑢𝑙 ≤ (𝑖)
𝑢𝑙

𝑥𝑖𝑗 ∈ {1, 2,… , 𝑚}, 𝑦𝑖𝑗 ∈ {1, 2,… , 𝑛},

(8)

where 𝑚𝑒𝑐
𝑥𝑖𝑗

and  𝑙𝑜𝑐
𝑖 represent the maximum available computing

power of 𝐸𝑥𝑖𝑗 and 𝑈𝑖, respectively, and (𝑖)
𝑢𝑙 is the maximum transport

rate of the uplink.
We realize the balance between real-time performance and energy

efficiency by adjusting the parameters to meet the needs of different
application scenarios. In IIoT, it is necessary to respond quickly to user
requests or process real-time data, and the requirement for real-time
performance is more critical. Therefore, by setting 𝜆 to a higher value,
we can pay more attention to real-time performance to ensure that the
system can respond to user demands in a timely manner.

Clearly, problem 1 is an integer programming problem aimed at
determining the optimal values of 𝑥𝑖𝑗 and 𝑦𝑖𝑗 to obtain the target server
𝐸𝑥𝑖𝑗 and the target ratio 𝑃𝑦𝑖𝑗 . Nonetheless, this issue is classified as
NP-hard, representing an expansion of the Knapsack problem. Tradi-
tional optimization methods are inadequate for solving such NP-hard
problems. Consequently, our suggestion is to employ a reinforcement
learning method to directly derive the ideal 𝐸𝑥𝑖𝑗 and 𝑃𝑦𝑖𝑗 .

4. Algorithm design

This part extensively explores the computational offloading tech-
nique that relies on DRL. Firstly, we define the multi-agent Markov
decision process (MAMDP) as a quaternion. Subsequently, we present
our improved MASTD3.

4.1. Preliminaries

In this case, the computational offloading issue is represented as a
MAMDP through the training of each device’s offloading policy. This
document characterizes the MAMDP issue as a quartet ( , ,,),
where in  , , and  symbolize the agent space, agents’ state space,
agents’ action space, and their reward function, in that sequence.

Agents Space  :  = {1, 2,… , 𝑁}, where 𝑁 is the number of
agents, each of which is placed on an IIoT device.

State Space : DRL aims to persistently acquire tactics from past
data to achieve an ideal viewpoint. Therefore, a comprehensive state
definition is crucial for decision-making efficiency. We take into ac-
count the conditions of the application, the computing power of the
users, the resource status of the edge servers, and the network condition
and establish the condition at time slot 𝑡 as

𝑠𝑡 = (, 𝑟1𝑢𝑙 ,… , 𝑟𝑚𝑢𝑙 , 𝐶𝑙 , 𝐶1,… , 𝐶𝑚)𝑡, (9)

where  signifies the input data’s magnitude, 𝐶𝑙 denotes the local
device’s computing power, 𝐶𝑖 signifies the computing capacity of edge
server 𝑖, while 𝑟𝑚𝑢𝑙 denotes the uplink speed of server 𝑚.

Action Space : Within our offloading context, the MD is regarded
as an RL agent tasked with deciding on the target server 𝐸𝑡𝑎𝑟 and the
target ratio 𝑃 when the state 𝑠 is received. The decision to offload is
𝑏 a

5
incorporated with calculating the ratio and characterizing the action as
a vector

𝑎𝑡 = (𝐸𝑡𝑎𝑟, 𝑃𝑏)𝑡. (10)

Reward function : During every time interval 𝑡, the agent is
rewarded with 𝑅(𝑠𝑡, 𝑎𝑡) in a particular state 𝑠𝑡 following the action
𝑎𝑡. Ideally, there should be a positive correlation between the reward
function and the objective function. Section 3 aims to reduce the
combined total latency and energy usage across all MDs, in contrast
to reinforcement learning, which seeks to optimize long-term benefits.
Consequently, there exists a negative correlation between the reward
function to the aggregate of latency and energy usage, that is, 𝑟𝑗 =
−𝑊𝑖𝑗 . The reward is designated as 𝑊𝑙−𝑊 (𝑠,𝑎)

𝑊𝑙
, with a negative reward

when 𝑊 (𝑠, 𝑎) > 𝑊𝑙, motivating RL agents to steer clear of adverse
outcomes behaviors.

Be aware that the MD is uninformed about the immediate band-
width available (i.e., 𝑟𝑢𝑙) and the kernel of the server (i.e., 𝐶𝑖). In
response, we suggest implementing the server broadcasting system.
Every mobile gadget upholds its own information. Displayed on a table
are the records of computing resources accessible locally, the uplink
transport rate, and the computing resources of each server available
to the user. During every time interval 𝑡, every edge server dispatches
a heartbeat packet to the MDs in its area, encompassing details about
accessible computing resources. Subsequently, every user revises their
table in response to the disseminated data. Training of the model occurs
on the server, with regular updates to the model. By regularly down-
loading the most recent model from the server, users are empowered
to make informed decisions using the latest data at hand.

4.2. Multiagent Twin Delayed Shared Deep Deterministic policy gradient
algorithm (MASTD3)

The MASTD3 employs an actor-critic framework comprising an
actor network (𝜇), a critic network (𝑄), and their respective target
networks. It utilizes a gradient algorithm to update the network param-
eters. Significantly, its design incorporates the use of both two critic
networks and two target critic networks.

In edge cloud computing systems, each agent changes its policy,
which makes the network environment change over time, and the
dynamic network makes the performance of traditional MADRL un-
stable. To ensure convergence, as shown in Fig. 3, we use a collab-
orative framework based on MASTD3. Meanwhile, we use the stan-
dard paradigm of centralized training and decentralized execution in
MADRL. That is, each MD plays an actor, while all MDs share a common
criticism for evaluating the value of a given state–action pair. By doing
so, MDs share continuous decisions, improve communication efficiency,
and achieve overall performance improvement. It uses two independent
critic networks to reduce estimation errors, introduces delays when
updating the target network, and stabilizes the training process. The
detailed process of the MASTD3 is summarized in Algorithm 1.

Generally, MASTD3 is composed of two primary stages: gathering
experiences and conducting training. During the gathering phase, a new
action 𝑎𝑡 arises by integrating random Gaussian noise into the output
of the actor network within the defined 𝑠𝑡.

𝑎𝑡 = 𝜇(𝑠𝑡, 𝜃𝜇) + 𝜎2, (11)

where the parameter 𝜃𝜇 represents the actor’s home network, and
𝜎2 denotes the additional Gaussian noise. This randomized element
facilitates wider exploration of the action space and thus promotes
strategic learning.

Subsequently, the environment rewards 𝑟𝑡, leading to the realization
of the subsequent state 𝑠𝑡+1, influenced by current state and action
(𝑠𝑡, 𝑎𝑡). Aiming to enhance the decision-making capabilities via training

ided by previous experiences, the tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is archived as

K. Jia et al.

w
a
𝐽
s
a
m
c
o
c
t
s
i
t

r
a
s

m
p
o
o

∇

a
u
o

d
a
g
n
a
a
t

𝜇

𝐿

Computer Networks 252 (2024) 110665
past experiences in the prioritized replay buffer. Throughout the train-
ing phase, a specific quantity of tuples is randomly selected from the
experience replay buffer for the purpose of training.

Typically, the sample size of model sample data is restricted, thus
impacting only a minor portion of the state–action values. Additionally,
insufficient coverage of as many states as feasible could adversely affect
the model. In response to these matters, the defined objective function
for supervised learning is defined in the following manner

𝐽𝐸 (𝜃𝜇) = max𝑎∈
[

𝑄(𝑠, 𝑎) + 𝑙
(

𝑎𝐸 , 𝑎
)]

−𝑄
(

𝑠, 𝑎𝐸
)

, (12)

here 𝑎𝐸 represents the model sample’s action, and 𝑙(𝑥, 𝑦) serves as
n indicator function. When 𝑎 = 𝑎𝐸 , it follows that 𝑙

(

𝑎, 𝑎𝐸
)

= 0 and
𝐸 (𝑄) = 0, signifying the model’s choice aligns with that of the model
ample decision. When 𝑎 ≠ 𝑎𝐸 , it suggests that the worth of a different
ction is comparably good to that of the model sample’s action. Eq. (12)
inimizes the difference between the predicted and actual values of the

ritic network by adjusting the parameters of the actor network. This
ptimization ensures that the actions chosen by the actor network are
onsistent with those that maximize the value function, thus improving
he overall decision-making process. The objective function introduces
upervised learning into the reinforcement learning framework, ensur-
ng that the actor network learns from a diverse set of actions, not just
he actions initially considered optimal.

In the actor’s primary network training progress, a group of tuples is
etrieved from the priority replay buffer. The actor network generates
novel action 𝑎′𝑛 = 𝜇(𝑠𝑛, 𝜃𝜇) derived from the state 𝑠𝑛. Concurrently,

hould the policy 𝑎′𝑛 diverge from the current policy 𝑎𝑛 in the expe-
rience replay buffer, upon inputting 𝑠𝑛 and 𝑎′𝑛 into the critic network
(such as 𝑄1), the network generates 𝑞𝑛 = 𝑄1(𝑠𝑛, 𝜇(𝑠𝑛, 𝜃𝜇), 𝜃𝑄1), with 𝜃𝑄1

representing a critical network parameter. Upon achieving all 𝑞𝑛, the
anticipated mathematical outcome is

𝐽𝑇𝐷3 (𝜃𝜇) = E
[

𝑄1
(

 , 𝜇 ( , 𝜃𝜇) , 𝜃𝑄1
)]

, (13)

where  = {𝑠𝑛|𝑛 ∈  }. The goal of this objective function is to
aximize the expectation of Q under the current policy, to find a set of
arameters 𝜃𝜇 that maximize the Q value corresponding to the output
f the action by the actor network in a given state. Then, the gradient
f strategy for the function 𝐽 in relation to 𝜃𝜇 can be described as

𝜃𝜇𝐽𝑇𝐷3 = E
[

∇𝑄1
(

 ,, 𝜃𝑄1
)

∇𝜃𝜇𝜇 ( , 𝜃𝜇)
]

, (14)

mong them,  = {𝑎𝑛|𝑛 ∈  }. By calculating this gradient, we can
pdate the parameters of the actor network 𝜃𝜇 so that the actor network
utputs better and better actions for a given state.

It is worth noting that the computed gradient needs to be gradient-
ecimated, which can avoid numerical instability caused by too large
gradient, such as skipping the optimal solution. The computed policy
radient will be used to further update the parameters of the actor
etwork to make the parameter update more stable and efficient. We
ssume that the learning rate of the actor network is 𝛽𝜇 , and use the
daptive estimation technique (Adam) method commonly used in DRL
o obtain the optimal 𝜃𝜇 .

In the critic network undergoes a training process, the target action
− network estimates the target action 𝑎′𝑡 = 𝜇−(𝑠′𝑡, 𝜃𝜇

−) + 𝜎̂2 from
the state at the next time step, where 𝜎̂2 represents the strategy noise,
specifically, pruned additive Gaussian noise. Following this, the next
action 𝑎′𝑛 and the next state 𝑠′𝑛 are inputted into the target critic net-
work 𝑄−

1 and the critic network 𝑄−
2 , in that order, using the parameters

𝜃𝑄
−
1 and 𝜃𝑄

−
2 . The output of these networks is 𝑞𝑛,1 and 𝑞𝑛,2, in that order.

Subsequently, the Bellman equation is used to estimate the value of 𝑄,
denoted as 𝑞𝑛 = min(𝑞𝑛,1, 𝑞𝑛,2), with 𝛾 being a variable represents the
discount rate. Concurrently, both action 𝑎𝑛 and state 𝑠𝑛 are fed into the
critic networks 𝑄1 and critic 𝑄2, with 𝜃𝑄1 and 𝜃𝑄2 as their respective
parameters, resulting in 𝑞𝑛,1 and 𝑞𝑛,2 in that order. Ultimately, for every
𝑞𝑛, as per the mean square error theorem, the anticipated squared loss
function between 𝑄1( ,, 𝜃𝑄1) and 𝑄̄ is computed

𝐿
(

𝜃𝑄1
)

= 0.5E
[

(

𝑄
(

 ,, 𝜃𝑄1
)

− 𝑄̄
)2] . (15)
1 1

6
Algorithm 1 MASTD3: Multi-agent Twin Delayed Shared Deep
Deterministic Policy Gradient
1: Initialization:

Initialize replay buffer 𝐷
Initialize critic network and actor network 𝑄𝜃1 , 𝑄𝜃2 , 𝜋𝜙

2: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝑀 do
3: Choose a random initial state 𝑠𝑖
4: Getting the status of preprocessing 𝜙𝑖 = 𝜙(𝑠𝑖)
5: for 𝑠𝑡𝑒𝑝 = 1 to 𝑇 do
6: Extracting higher weights minibatch of transitions

(𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) from 𝐷 model sample data

7: 𝑦𝑗 =

{

𝑟𝑗 terminates
𝑟𝑗 + 𝛾max𝑎′𝐽 (𝑄̂(𝜑𝑗+1, 𝑎′; 𝜃)) otherwise

8: 𝑙𝑜𝑠𝑠 = (𝑦𝑗 − 𝐽 (𝑄(𝜑𝑗 , 𝑎𝑗 ; 𝜃)))
2

9: Execute a gradient descent on 𝜃1, 𝜃2, 𝜃3
10: if 𝑠𝑡𝑒𝑝%𝑛 == 0 then
11: 𝜃′1 ← 𝜃1, 𝜃′2 ← 𝜃2, 𝜃′3 ← 𝜃3
12: for 𝑎𝑔𝑒𝑛𝑡 𝑖 = 1 to 𝑁 do
13: Randomly select 𝐻 from 𝐷 to form minibatch
14: respectively, through Eq. (15) and Eq. (16) Updating the

Critics’ Network and the Actors’ Network
15: end for
16: Updating the target network by Eq. (19), Eq. (20) and

Eq. (21)
17: end if
18: for 𝑡 = 1 to 𝑇 do
19: Randomize a stochastic process 𝜎, using Eq. (11) that

facilitates continuous action exploration
20: Otherwise select 𝑎𝑡 = argmax𝑎𝑄(𝜑(𝑠𝑡), 𝑎; 𝜃)
21: Executing actions in the simulator 𝑎𝑡
22: Observe the reward 𝑟𝑡 and the next state 𝑠𝑡+1
23: preprocessing 𝜑𝑡+1 = 𝜑(𝑠𝑡+1)
24: Store the conversion (𝜑𝑡, 𝑎𝑡, 𝑟𝑡, 𝜑𝑡+1) in 𝐷
25: if 𝐷 reaches the capacity limit and 𝑡%𝑚 == 0 then
26: Sample a small random batch from 𝐷 with a prioritized

replay caching mechanism: (𝜑𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝜑𝑗+1)
27: Performs the same operation as in for 𝑠𝑡𝑒𝑝
28: end if
29: end for
30: end for
31: end for

The anticipated squared loss between 𝑄2( ,, 𝜃𝑄2) and 𝑄̄ is

2
(

𝜃𝑄2
)

= 0.5E
[

(

𝑄2
(

 ,, 𝜃𝑄2
)

− 𝑄̄
)2] , (16)

where 𝑄̄ = {𝑞𝑛|𝑛 ∈  }, the objective is to minimize the mean square
error between the actual Q value and the target Q value, followed by
the gradient of the loss function 𝐿1

(

𝜃𝑄1
)

in relation to 𝜃𝑄1 is

∇𝜃𝑄1𝐿1 = E
[(

𝑄1
(

 ,, 𝜃𝑄1
)

− 𝑄̄
)

∇𝜃𝑄1𝑄1
(

 ,, 𝜃𝑄1
)]

. (17)

The slope of the loss function 𝐿2
(

𝜃𝑄2
)

in relation to 𝜃𝑄2 is

∇𝜃𝑄2𝐿2 = E
[(

𝑄2
(

 ,, 𝜃𝑄2
)

− 𝑄̄
)

∇𝜃𝑄2𝑄2
(

 ,, 𝜃𝑄2
)]

. (18)

Similarly to computing the policy gradient, there is no significant
difference between using Eqs. (17) and (18). These gradients are used to
update the parameters of the value network to incrementally improve
the estimation of the value of state–action pairs. Gradient clipping is
also required after computing the gradient. Furthermore, 𝛽𝑄 symbolizes
the critic network’s learning pace, with the parameters of both critic
networks being modified through Adam’s algorithm. For improved
stability in learning, the critical target network’s parameters also neces-
sitate modifications via the soft update technique. This process entails

K. Jia et al.

s

o

𝐽

Computer Networks 252 (2024) 110665
the incremental modification of the critic target network’s parameters
to align with those of the critic network, as described by

𝜃𝜇
−
= 𝜆𝜃𝜇 + (1 − 𝜆)𝜃𝜇

−
, (19)

𝜃𝑄
−
1 = 𝜆𝜃𝑄1 + (1 − 𝜆)𝜃𝑄

−
1 , (20)

𝜃𝑄
−
2 = 𝜆𝜃𝑄2 + (1 − 𝜆)𝜃𝑄

−
2 , (21)

where 𝜆 represents the rate at which the target network learns. This
document employs a reduced frequency for updating the network,
necessitating multiple batch network training to maintain the stability
of the 𝑄-value. Subsequently, we proceed to update the network of
trategies.

The goal function of MASTD3 combines several of these learning
bjectives

(𝜃𝜇) = 𝐽𝑇𝐷3(𝜃𝜇) + 𝜆1𝐽𝐸 (𝜃𝜇) + 𝜆2(𝐿1
(

𝜃𝑄1
)

+ 𝐿2
(

𝜃𝑄2
)

), (22)

where 𝐽𝑇𝐷3(𝜃𝜇) is the target function of 𝑄(𝑠, 𝑎), 𝐽𝐸 (𝜃𝜇) is the target
function of supervised learning, and 𝜆1 and 𝜆2 are the weighting
coefficients to balance these target functions. It is used to ensure the
effectiveness and stability of the algorithm in optimizing the strategy
and value estimation.

where 𝐽𝑇𝐷3(𝜃𝜇) is the objective function of 𝑄(𝑠, 𝑎), 𝐽𝐸 (𝜃𝜇), which
improves the quality of decision making by optimizing the strategy,
𝐽𝐸 (𝜃𝜇) is the objective function of supervised learning, which helps the
algorithm to converge to a better strategy faster by utilizing the prior
knowledge or labeled data, 𝐿1

(

𝜃𝑄1
)

+𝐿2
(

𝜃𝑄2
)

denotes the loss function
of the two Q-networks, which is aimed at reducing the prediction error
and improving the accuracy of the value function estimation, and 𝜆1
and 𝜆2 is the weighting factor that balances these objective functions,
and through appropriate weight allocation, a balance can be found
between different learning objectives, which can be used to ensure the
effectiveness and stability of the algorithm in optimizing the strategy
and value estimation. This multi-objective optimization strategy im-
proves the performance and adaptability of the overall algorithm by
using the complementary advantages of each.

4.3. Summary

At any given time slot 𝑡, the MD segments the application  into
several distinct tasks, each linked to a particular ratio. Subsequently,
it is up to the client to determine the parameters for offloading,
namely the target server and the desired proportion. Our suggested
MASTD3 involves eliminating , , and . Training of the model
takes place on an edge server, where the user regularly retrieves
the most recent model. Subsequently, the client utilizes the state 
into the model to derive 𝑄-values for every action, represented as
{𝑄( , 𝑎1), 𝑄( , 𝑎2),… , 𝑄( , 𝑎𝑛)}. The operation related to the highest 𝑄-
value, denoted as 𝑎′ = argmax𝑎∈
𝑄( , 𝑎) gets chosen. Following this procedure, indicated as 𝑎′ = (𝐸𝑡𝑎𝑟,
𝑃𝑏), the client transfers the application to the designated server 𝐸𝑡𝑎𝑟 in
accordance with the desired ratio 𝑃𝑏.

Initially, the replay buffer 𝐷 is set up with model sample data,
the behavioral network 𝑄 with 𝜃, and the target network 𝑄̂ with 𝜃′.
Subsequently, we proceed to comparably optimal weights 𝜃1 and 𝜃′1
via guided learning on the sampled model data. Subsequently, the
behavioral network is employed to engage with the RL agent (namely,
the MD) and gather a sequence of specimens, archiving them in the
replay buffer. Upon attaining a predetermined number of samples, we
intermittently choose favored samples (𝜙𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝜙𝑗+1) from 𝐷 at regular
intervals to train the network until the convergence of both networks
occurs.

The impact of network dynamics refers to the effect of changes
in the network environment on the performance of computational

offloading algorithms. It mainly includes: bandwidth fluctuation that

7
Table 2
Setup parameters.

Parameter Value Parameter Value

𝑝𝑢 0.01 W 𝑁 256
𝑔𝑢𝑙 10−3 𝛽2 0.1
𝐵 3 𝜆 0.8
𝑑 10 𝜆1 0.9
𝛽𝑙 −2 𝜆2 0.4
𝛼 0.001 𝛽 0.001
𝛾 0.9 𝜀 0.9
𝐾 350 𝐷 2000
𝑚 50 𝑓 200

affects data transmission speed and latency, server availability changes
that increase system scheduling overhead, network congestion that
leads to packet loss and retransmission increases latency and energy
consumption, and latency changes that affect the real-time processing
capability of tasks.

The MASTD3 copes with the effects of network dynamics and
provides a flexible task-offloading solution by the following methods.
First, DRL is utilized to implement an adaptive offloading strategy
that monitors and adjusts network conditions in real-time. Second,
a prioritized empirical replay buffer is introduced to improve the
model’s adaptability to dynamic changes and alleviate the cold-start
problem. All agents share a public evaluation network to promote
information sharing and collaboration, improve system stability, and
perform well even with the increase of devices and users. Finally, a real-
time monitoring and feedback mechanism is integrated to adjust the
task offloading strategy in a timely manner to ensure efficient operation
of the system in different network dynamic environments. The detailed
flow of the MASTD3 is outlined in Algorithm 1.

The composite objective function design in MASTD3 combines the
reinforcement learning and supervised learning objectives of TD3,
which are balanced by weighted coefficients to enable the algorithm
to excel in a variety of metrics such as reward, latency, and energy
consumption. The pruned Gaussian noise treatment reduces the ran-
dom fluctuations in policy updates and improves stability and robust-
ness. MASTD3 significantly improves the multi-objective optimization
capability through these several key innovations.

In MADRL, there are also scenarios where the agents do not share
a critical network. For example, the agents work in different environ-
ments, and different agents perceive different states of the environment.
This situation requires each agent to perform value estimation and
policy updates independently. If it is not shared, the problem can be
solved using MATD3, which is used to handle scenarios where multiple
agents do not share a critical network.

5. Experiment

This part evaluates the efficacy of the MASTD3 we suggest. In
our assessment, we focus on creating simulation tests that revolve
around real-time video analysis tools, assigning distinct values to vari-
ous parameters. Subsequently, we evaluate the practicality of employ-
ing MASTD3 in these situations. Furthermore, multiple control groups
were formed to confirm the efficiency of the MASTD3.

5.1. Parameter setup

Our simulation experiment mirrors a real-life scenario in a real-time
monitoring system, where end devices receive simultaneous real-time
data from various sensor devices. Since the data from these sensors
are independent of each other, we can divide the monitoring system
into multiple independent tasks, each tasked with analyzing data from
a specific sensor device. If the end devices’ computational capabilities
are inadequate, a specific proportion of data must be transferred to
the respective edge server for processing. As a result, the final device

K. Jia et al.

m
t

5
g
b
c
r
t
t
t

s
d

Computer Networks 252 (2024) 110665
Fig. 4. Changes in reward for different methods.
Table 3
Changes in various algorithmic rewards as the number of MESs changes.

The number of MESs NOP CCOP ROP DDPQN [30] MADDPG [31] FLoadNet [29] MASTD3

3 235.127128 125.999806 139.169395 96.024980 118.576540 83.711629 81.649920
5 232.986406 123.011159 134.875464 107.090790 110.920730 89.494631 80.463030
7 217.194178 119.213036 130.753300 70.749970 104.302350 101.368773 55.102914
9 226.350736 126.236699 135.169395 90.107290 118.682090 97.594187 76.031120
10 242.187325 135.700859 150.394199 95.964800 125.945170 104.541259 88.991590
Fig. 5. Impact of the number of mobile edge servers on total losses.

ust identify the desired edge server and decide the amount of data to
ransfer.

Presuming every terminal device handles data from 8:00 a.m. to
:00 p.m., producing a single data point every five minutes, steady
rowth in data volume is noted from 8:00 a.m. to 11:00 a.m. during
usiness hours. Accompanying this rise signifies a rise in the accessible
omputing resources on both local and server levels, coupled with a
eduction in the link bandwidth available. The interval from 11:00 a.m.
o 2:00 p.m. marks the interval of rest, leading to a trend of fluctuation
hat contrasts with that of the morning. Lastly, starting at 2:00 p.m.,
he pattern of each element reverts to its initial morning configuration.

In general, we can set the parameters according to the scenario de-
cribed above. Initially, data size 𝐵 adheres to a consistent distribution,
enoted as  ranging from [2000, 3000]. The count of initially accessible

subcarriers 𝑘 and the computational assets (namely, cores) 𝑓𝑠 and 𝑓𝑙
exhibit a consistent distribution, with 𝑘 ranging between [160,200].
with 𝑓𝑠 ranging from [25,32] and 𝑓𝑙 from [6,8], in that order. During
every time interval 𝑡, the fluctuations 𝛥, 𝛥𝑘, 𝛥𝑓𝑙, 𝛥𝑓𝑠 adhere to a
Poisson distribution characterized by parameters  = 30,10,2 and 5,
in that order. Additional fixed parameters can be found in Table 1.

5.2. Comparison design

For confirming MASTD3’s efficacy, a variety of tactics were used as
standard benchmarks:
8
• No Offload Policy (NOP): This policy entails handling all pro-
cesses locally, disregarding link bandwidth and server resources.

• Computational Capacity Optimal Policy (CCOP): At each time
slot 𝑡, the MD will choose the server with the largest amount of
available computing resources and migrate the entire application
to it.

• Random Offload Policy (ROP): At every time slot 𝑡, the MD selects
a random 𝑎 ∈  server and a ratio for offloading.

• MATD3: The critic network in MATD3 is not shared, and it is used
to handle situations that require value estimation and strategy
updating to be performed independently by each agent.

• DDPQN [30]: The Dual Duel Priority Deep Q-Network (DDPQN)
algorithm allocates computational resources rationally in local-
edge-cloud collaborative environments, aiming for an efficient
offloading strategy with low latency, energy consumption, and
cost.

• MADDPG [31]: This algorithm minimizes the total cost for all
mobile users while meeting delay and resource constraints using
the Multi-agent Deep Deterministic Policy Gradient (MADDPG)
approach.

• FLoadNet [29]: The algorithm presents an actor-critic reinforce-
ment learning framework that significantly reduces computa-
tional cost for optimizing joint multi-subject strategies.

5.3. Simulation results

First, our feasibility of MASTD3 is demonstrated. The convergence
of the network can be ensured because we use deep neural networks
to evaluate the Q-value. Originally, the inaccurate estimation would
seriously influence the decision-making performance in the later stage.
Additional parameters can be found in Table 2.

During the training process, we learn using different methods: NOP,
CCOP, ROP, and our proposed MASTD3. We observe the performance of
each agent body in terms of average reward with a gradually increasing
number of training sets.

As shown in Fig. 4(a), the rewards of the NOP, CCOP, and ROP
remain almost unchanged throughout the training process, indicating
the effectiveness of the DRL-based algorithms in the learning task.
At the beginning of training, MASTD3 is only marginally better than
ROP and much worse than the other three strategies, mainly due to
the high degree of randomness in action selection. However, MASTD3
gradually increases the probability of selecting the optimal action as the

K. Jia et al. Computer Networks 252 (2024) 110665
Fig. 6. Impact of number of users on total loss and delay.
Fig. 7. Effect of learning rate, model sample buffer size, and batch size on the performance of MASTD3.
Fig. 8. The total cost, delay, and reward as the number of users changes.
Fig. 9. Impact of number of users on total loss and delay.
number of training steps increases, bringing the decision closer to the
ultimate choice each time. CCOP unilaterally pursues the optimization
of the resources (i.e., subcarriers 𝑘 or kernels 𝑓), a valid approach in
many cases, but the consideration of the problem is too one-sided. The
performance of CCOP is weak when the network is crowded. As a result,
the whole performance is marginally worse than that of MASTD3. On
the other hand, ROP is too random, and the convergence speed of
MASTD3.

We also provide a comparison of the behavior of MASTD3 with
other tactics. In a similar way to the approach described earlier, the re-
wards of the DRL-based algorithms are clearly demonstrated in Fig. 4(b)
as the number of training sets proceeds. MASTD3 converges faster and
9
obtains higher rewards in the same rounds. This indicates that MASTD3
not only achieves a stable performance during the learning process,
making it a superior choice to cope with the computational offloading
problem under mobile edge networks.

Fig. 5 depicts the change in the network’s loss during the training
process, which stabilizes after about 150 episodes, indicating that
MASTD3 learns an effective strategy for resource allocation and adapts
quickly to the changing environment. The figure clearly illustrates
that with an increase in training steps, there is a gradual reduction
in training loss, ultimately leading to zero convergence, indicating
convergence. This suggests the practicality of estimating the Q-value
using neural networks. Variations in network loss arise due to the

K. Jia et al.

a
s
t
i
t
p
t
s
n
w
h
f
s
c

Computer Networks 252 (2024) 110665
Table 4
Losses of different algorithms for different failure rates and failure time slots.

MASTD3 DDPQN [30] MADDPG [31] FLoadNet [29]

5 10 15 5 10 15 5 10 15 5 10 15

0 55.10 – – 98.96 – – 77.90 – – 66.77 – –
1 59.70 61.29 74.19 104.04 105.82 107.74 92.20 95.46 100.09 74.83 75.10 76.10
2 60.34 66.58 88.43 105.76 106.89 109.84 105.51 104.86 122.32 74.98 75.05 76.18
3 61.31 67.87 77.29 106.71 107.09 108.59 105.06 109.98 110.38 76.25 77.49 78.58
4 73.73 74.64 76.44 105.39 106.24 107.44 106.00 109.63 111.64 78.04 79.58 80.04
5 74.96 75.17 92.15 106.50 107.41 108.36 107.62 110.18 110.41 79.64 80.18 81.18
10 75.60 77.64 101.67 107.36 114.92 115.14 110.00 112.90 115.82 80.86 82.72 83.15
15 76.83 85.79 90.22 108.53 109.43 110.48 112.40 114.65 116.15 81.83 82.72 83.14
20 81.99 83.59 88.89 109.30 111.68 112.71 113.30 115.94 118.35 82.72 83.19 84.65
25 84.85 108.02 110.71 110.87 112.44 114.21 114.57 116.10 119.11 84.85 85.85 86.65
o
e
W
l
o
e
t
(
e
c
a
c

t
d
a
t
s
t
a
i
a
e

D
c
t
e
t
c
a
l

u
p
f
D
e
f
e
1
r
t

a
t
o
b
a
a
t

reinforcement learning agent’s probabilistic decision-making at every
stage. Consequently, if the action is suboptimal (or beneficial), the
agent will be rewarded with either a low (or high) amount, resulting
in variations during the training defeat.

In Fig. 6, we compare various amounts of mobile edge servers.
As the quantity of mobile edge servers equals 7, we observe that the
workloads are distributed more efficiently, the resources are allocated
more appropriately, and the system reaches an optimal equilibrium
point, which ultimately leads to the minimization of system losses.

Increasing the number of edge servers may provide several benefits.
First, a reasonable increase in the number of edge servers can better
satisfy user or device requests and reduce the latency of data trans-
mission and processing. Second, a moderate increase in the number of
edge servers can effectively share the workload and reduce the average
power consumption of the system because each server is running at
relative ease. However, too many edge servers can have some negative
effects. Too many servers may lead to over-dispersal of the system,
adding additional communication and task scheduling overheads, and
thus increasing latency. In addition, coordination and synchronization
between edge servers takes time, and too many servers can also increase
management and scheduling complexity. In addition, too many servers
add additional overhead for system communication and data transfer,
which in turn increases the overall energy consumption of the system.

As the number of edge devices increases, MASTD3 is able to ef-
fectively cope with more device requests and task assignment needs.
Its DRL-based architecture has a certain degree of parallelism, which
enables it to handle multiple device requests in large-scale deployments
and make appropriate decisions in a shorter period of time.

The analysis of the impact of various parameters on the performance
of MASTD3 is crucial for optimizing its effectiveness. Here are the
observations from the analysis:

Fig. 7(a) demonstrates that a combination of high learning rates
does not inevitably speed up the acceleration of convergence. MASTD3
with a learning rate of 𝛼 = 0.001 achieves the highest return, indicating
optimal convergence. Higher learning rates, such as 𝛼 = 0.003, result
in slower convergence, and further increases may prevent conver-
gence altogether. Fig. 7(b) reflects the rewards of MASTD3 at different
batch sizes. Similarly, 𝑁 = 64 demonstrates the fastest convergence
nd achieves the highest reward for MASTD3. Batch size does not
ignificantly change effectiveness As shown in Fig. 7(c), increasing
he model sample buffer size initially enhances performance, but the
mprovement is not linearly related to the buffer size. Beyond a certain
hreshold, further increases in buffer size do not significantly improve
erformance. Therefore, it is crucial to carefully determine the size of
he model sample buffer. 𝐷 = 2000 exhibits higher performance. As
hown in Fig. 7(d), consistent with the findings for the actor’s home
etwork, a learning rate 𝛼 = 0.001 yields the largest reward for MASTD3
hen considering the actor family network. Overall, these analyses
ighlight the importance of parameter selection in optimizing the per-
ormance of MASTD3. Moderate learning rates and appropriate buffer
izes are crucial for achieving optimal convergence and performance in
omputational offloading scenarios.
10
We investigate how the number of MDs affects these computational
ffloading algorithms. Fig. 8 shows the comparison of total loss, delay,
nergy consumption, and reward under different numbers of users.
ith the rise in the quantity of MUs, MASTD3 consistently achieves

esser losses compared to these algorithms. With the rise in the quantity
f MUs, the overall expense of each algorithm escalates due to height-
ned competition for transmission and computational resources. Given
hat MASTD3 takes into account the uncertain distribution of resources
i.e., computational and transmission resources) at the level of ESs, it
ffectively orchestrates the operations of each MU. Although the system
ost increases as the number of MUs increases, the system cost as well
s the time delay of our approach is lower than other algorithms. You
an also see more data in Table 3.

As the number of users increases, MASTD3 can better cope with
he growth of network load and communication demand. Its algorithm
esign takes into account the interaction and competition among users,
nd by learning and optimizing the task offloading strategy, it can effec-
ively manage the resource allocation and network traffic when the user
cale expands, thus improving the overall efficiency and performance of
he system. In addition, MASTD3 is flexible and adaptive, able to adjust
nd optimize according to changes in the environment and demand
ncreases. It can dynamically adapt to IIoT deployments of varying size
nd complexity, and flexibly respond to various network conditions and
nvironmental changes while maintaining stability and performance.

As depicted in Fig. 9, we compare the four algorithms, MASTD3,
DPQN, MADDPG, and FLoadNet, in terms of time delay and energy
onsumption during training, our algorithm is significantly lower than
he other two algorithms in terms of computational time delay and
nergy consumption, and it can be seen that the effect of DDPQN is
he worst, and MASTD3 has had a change in the metric of energy
onsumption, but after that it still find a better strategy, using MASTD3
s a benchmark, the time delay is 30.62% lower than DDPQN, 20.3%
ower than MADDPG, and 12.17% lower than FLoadNet.

At the same time, we investigate the robustness of the model
nder server availability. We conduct a comparative study on the
erformance of different algorithms in terms of server failure rate and
ailure time slots. The experiments include four algorithms; MASTD3,
DPQN, MADDPG, and FLoadNet. We observe the performance of
ach algorithm by modifying the server failure rate as well as the
ailure time slot. In each scenario, we recorded the performance of
ach algorithm at different failure rates (0%, 1%, 2%, 3%, 4%, 5%,
0%, 15%, 20%, 25%) and different failure time slots (5, 10, 15). The
esults are summarized in the following table, which contains data on
he performance of each algorithm in each scenario.

With 5, 10, and 15 in the second row denoting the failure time slots
nd the first column denoting the failure probability, it can be seen
hat the loss, delay, and energy consumption of the algorithms increases
verall with the increase in the failure rate and the failure time slots,
ut there are exceptions. These exceptions show that the algorithms are
ble to optimize and adjust their performance in the face of complex
nd dynamic environments through a variety of mechanisms so that
hey can still maintain a high level of performance in certain specific

K. Jia et al. Computer Networks 252 (2024) 110665
Table 5
Delay of different algorithms for different failure rates and failure time slots.

MASTD3 DDPQN [30] MADDPG [31] FLoadNet [29]

5 10 15 5 10 15 5 10 15 5 10 15

0 67.75 – – 118.48 – – 93.54 – – 80.02 – –
1 73.49 75.29 91.00 124.83 127.25 129.16 110.02 113.19 118.40 88.29 89.05 88.81
2 74.20 81.86 108.69 128.05 129.32 131.61 125.92 125.22 146.13 88.81 88.85 90.03
3 75.22 83.41 94.32 128.56 128.79 130.18 124.96 130.80 131.20 90.54 91.81 92.91
4 90.71 91.84 93.08 126.42 128.24 129.03 126.65 131.75 133.38 93.52 94.32 94.53
5 92.17 92.40 112.51 127.26 128.20 129.72 128.83 131.94 132.14 94.85 95.06 96.32
10 92.73 95.24 122.55 128.30 136.58 137.55 131.79 135.37 138.55 96.19 100.10 105.48
15 94.12 104.92 110.17 129.45 132.84 133.95 134.53 136.93 138.86 96.99 98.01 98.42
20 99.87 102.37 104.45 130.39 133.33 134.31 135.56 138.42 141.26 97.20 105.31 119.42
25 103.27 130.37 132.77 131.57 134.06 136.10 136.93 138.53 142.06 109.23 131.08 138.64
Table 6
Energy of different algorithms for different failure rates and failure time slots.

MASTD3 DDPQN [30] MADDPG [31] FLoadNet [29]

5 10 15 5 10 15 5 10 15 5 10 15

0 4.52 – – 20.87 – – 15.34 – – 13.81 – –
1 4.84 5.30 6.99 20.86 20.11 15.29 20.94 24.55 26.83 16.70 17.95 20.27
2 4.88 5.44 7.40 16.61 17.17 16.55 23.85 23.40 27.08 19.69 19.86 20.79
3 5.69 5.73 9.18 19.33 19.89 22.21 25.48 26.74 27.10 19.11 20.24 21.28
4 5.80 5.87 9.88 21.25 18.27 20.84 23.43 21.15 24.67 19.35 20.63 22.09
5 6.13 6.22 10.71 23.43 24.25 22.88 22.78 23.17 23.51 20.33 20.68 23.24
10 7.10 7.28 18.15 23.59 28.31 25.47 22.84 23.02 24.89 19.57 21.54 23.77
15 7.67 9.27 10.44 24.85 15.80 16.60 23.85 25.53 25.32 19.80 21.58 22.07
20 10.48 8.44 11.64 24.96 25.04 26.34 24.22 26.01 26.74 20.60 25.36 22.88
25 11.16 18.59 22.48 25.57 25.96 26.61 25.09 26.37 27.31 22.27 25.74 28.72
situations. This also reflects the adaptability and robustness of the algo-
rithm in complex environments. MASTD3 has relatively low loss values
at all fault time slots and especially performs best with 5 time slots.
In contrast, the loss of DDPQN increases significantly with increasing
fault time slots, while MADDPG has the highest loss at high fault rates.
FLoadNet performs between MASTD3 and the other algorithms, but the
loss is still high at high fault rates. As can be understood from Table 5,
MASTD3 has significantly lower latency than the other algorithms.
From Table 6, it can be understood that the energy consumption of
MASTD3 is also lower than the other algorithms. The experimental
results show that MASTD3 performs well under the conditions of
changing server availability, verifying its robustness and effectiveness
in this aspect of the application.

With 5, 10, and 15 in the second row denoting the failure time slots
and the first column denoting the failure probability, it can be seen
that the loss, delay, and energy consumption of the algorithms increases
overall with the increase in the failure rate and the failure time slots,
but there are exceptions. These exceptions show that the algorithms are
able to optimize and adjust their performance in the face of complex
and dynamic environments through a variety of mechanisms so that
they can still maintain a high level of performance in certain specific
situations. This also reflects the adaptability and robustness of the
algorithm in complex environments. In Table 4, MASTD3 has relatively
low loss values at all fault time slots and especially performs best with
5 time slots. In contrast, the loss of DDPQN increases significantly
with increasing fault time slots, while MADDPG has the highest loss at
high fault rates. FLoadNet performs between MASTD3 and the other
algorithms, but the loss is still high at high fault rates. As can be
understood from Table 5, MASTD3 has significantly lower latency than
the other algorithms. From Table 6, it can be understood that the en-
ergy consumption of MASTD3 is also lower than the other algorithms.
The experimental results show that MASTD3 performs well under the
conditions of changing server availability, verifying its robustness and
effectiveness in this aspect of the application.

5.4. Real world data results

We use real traces of 4G/LTE networks to construct an evaluation

environment. The first trace dataset contains 4G network bandwidth

11
measurements for several routes in and around the city of Ghent,
Belgium between 2015-12-16 and 2016-02-04. These data are collected
from a Huawei smartphone running in six situations: walking, cycling,
bus, streetcar, train, and car. We randomly select three walking datasets
for our experiments. The results are shown in Fig. 10(a). The second
tracking dataset contains 4G network bandwidth measurements for
several routes in and around Jinan, Shandong Province, China between
2022-06-16 and 2023-07-17. These data are collected from Xiaomi
smartphones running in five situations: walking, bicycling, bus, high-
speed rail, and car. We randomly selected three HSR datasets in our
experiment. The results are shown in Fig. 10(b) The other experimental
parameters are set the same as the previous experimental parameters.

MASTD3 has the highest and most stable reward values throughout
the training process, indicating its optimal performance on this task.
FLoadNet performs second only to MASTD3. MADDPG, although it
improves in the later stages of the training, does not perform as well
as MASTD3 and FLoadNet overall. MADDPG, as well as DDPQN, have
unstable reward values. This graph shows that the MASTD3 still has a
significant advantage in real world data.

6. Conclusion

The proposed MASTD3 addresses the computational offloading
problem in real-time multi-user, multi-server scenarios. By minimizing
the weighted sum of latency and energy consumption, it aims to
optimize the allocation of workload to edge servers. Key enhancements
include leveraging the time-varying nature of the edge environment,
integrating priority replay buffer and model sample buffer mechanisms,
and sharing a common critic network among all agents. Experimental
results demonstrate the practicality and efficiency of MASTD3. How-
ever, training DRL networks in real world scenarios with consistent
tracking and minimal errors can be challenging. In the IIoT, MASTD3
is able to be generalized to other networks, and its generalization
and applicability depend on the characteristics of the network and the
setup. There are many different application scenarios in IIoT, such as
smart manufacturing, remote monitoring, etc. These scenarios have
different requirements for task offloading and resource management.

the design of MASTD3 is flexible and can be adjusted according to

K. Jia et al. Computer Networks 252 (2024) 110665
Fig. 10. Real world data results.
specific application scenarios to optimize task scheduling strategies in
different scenarios. Therefore, we will go a step further and design a
DRL model that is more adapted to the real world.

CRediT authorship contribution statement

Kunkun Jia: Writing – original draft, Visualization, Validation,
Software, Resources, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization. Hui Xia: Writing – review & editing, Su-
pervision, Funding acquisition. Rui Zhang: Writing – review & editing,
Supervision, Conceptualization. Yue Sun: Writing – review & edit-
ing, Supervision, Investigation. Kai Wang: Writing – original draft,
Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Hui Xia reports financial support was provided by National Natural
Science Foundation of China (NSFC) under grant number 62172377.
Hui Xia reports financial support was provided by Taishan Scholars
Program of Shandong province under grant number tsqn202312102.
Hui Xia reports financial support was provided by Startup Research
Foundation for Distnguished Scholars under grant number 202112016.
If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] G.S.S. Chalapathi, V. Chamola, A. Vaish, R. Buyya, Industrial Internet of Things
(IIoT) applications of edge and fog computing: A review and future directions
CoRR abs/1912.00595, 2019.

[2] W. Chen, X. Qiu, T. Cai, H. Dai, Z. Zheng, Y. Zhang, Deep reinforcement learning
for Internet of Things: A comprehensive survey, IEEE Commun. Surv. Tutor. 23
(3) (2021) 1659–1692.

[3] A. Heidari, M.A.J. Jamali, N.J. Navimipour, S. Akbarpour, Internet of Things
offloading: Ongoing issues, opportunities, and future challenges, Int. J. Commun.
Syst. 33 (14) (2020).

[4] M. Kumar, G.K. Walia, H. Shingare, S. Singh, S.S. Gill, AI-based sustainable and
intelligent offloading framework for iIoT in collaborative cloud-fog environments,
IEEE Trans. Consum. Electron. (2023).

[5] C. Qiu, H. Yao, C. Jiang, S. Guo, F. Xu, Cloud computing assisted blockchain-
enabled Internet of Things, IEEE Trans. Cloud Comput. 10 (1) (2022)
247–257.

[6] R. Almutairi, G. Bergami, G. Morgan, Advancements and challenges in IoT
simulators: A comprehensive review, Sensors 24 (5) (2024) 1511.

[7] J. Niu, S. Zhang, K. Chi, G. Shen, W. Gao, Deep learning for online computation
offloading and resource allocation in NOMA, Comput. Netw. 216 (2022) 109238.

[8] A. Hazra, A. Kalita, M. Gurusamy, Meeting the requirements of Internet of
Things: The promise of edge computing, IEEE Internet Things J. 11 (5) (2024)
7474–7498.
12
[9] Y. Li, S. Cheng, H. Zhang, J. Liu, Dynamic adaptive workload offloading strategy
in mobile edge computing networks, Comput. Netw. 233 (2023) 109878.

[10] S. Long, W. Long, Z. Li, K. Li, Y. Xia, Z. Tang, A game-based approach for
cost-aware task assignment with QoS constraint in collaborative edge and cloud
environments, IEEE Trans. Parallel Distrib. Syst. 32 (7) (2021) 1629–1640.

[11] L. Ma, X. Wang, X. Wang, L. Wang, Y. Shi, M. Huang, TCDA: Truthful
combinatorial double auctions for mobile edge computing in industrial internet
of things, IEEE Trans. Mob. Comput. 21 (11) (2022) 4125–4138.

[12] A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, A survey on the computation
offloading approaches in mobile edge computing: A machine learning-based
perspective, Comput. Netw. 182 (2020) 107496.

[13] Z. Zabihi, A. Eftekhari-Moghadam, M.H. Rezvani, Reinforcement learning meth-
ods for computation offloading: A systematic review, ACM Comput. Surv. 56 (1)
(2024) 17:1–17:41.

[14] J. Zhang, J. Du, Y. Shen, J. Wang, Dynamic computation offloading with
energy harvesting devices: A hybrid-decision-based deep reinforcement learning
approach, IEEE Internet Things J. 7 (10) (2020) 9303–9317.

[15] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, L. Li, Delay-aware and energy-efficient
computation offloading in mobile-edge computing using deep reinforcement
learning, IEEE Trans. Cogn. Commun. Netw. 7 (3) (2021) 881–892.

[16] G. Wu, Z. Xu, H. Zhang, S. Shen, S. Yu, Multi-agent DRL for joint completion
delay and energy consumption with queuing theory in MEC-based IIoT, J. Parallel
Distrib. Comput. 176 (2023) 80–94.

[17] L. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, B. Lin, NOMA assisted multi-task multi-
access mobile edge computing via deep reinforcement learning for industrial
internet of things, IEEE Trans. Ind. Inform. 17 (8) (2021) 5688–5698.

[18] X. Yao, N. Chen, X. Yuan, P. Ou, Performance optimization of serverless edge
computing function offloading based on deep reinforcement learning, Future
Gener. Comput. Syst. 139 (2023) 74–86.

[19] B. Saglam, F.B. Mutlu, D.C. Cicek, S.S. Kozat, Actor prioritized experience replay,
J. Artificial Intelligence Res. 78 (2023) 639–672.

[20] L. Huang, S. Bi, Y.A. Zhang, Deep reinforcement learning for online computation
offloading in wireless powered mobile-edge computing networks, IEEE Trans.
Mob. Comput. 19 (11) (2020) 2581–2593.

[21] S. Zhang, H. Gu, K. Chi, L. Huang, K. Yu, S. Mumtaz, DRL-based partial
offloading for maximizing sum computation rate of wireless powered mobile edge
computing network, IEEE Trans. Wirel. Commun. 21 (12) (2022) 10934–10948.

[22] F. Wang, J. Xu, S. Cui, Optimal energy allocation and task offloading policy for
wireless powered mobile edge computing systems, IEEE Trans. Wirel. Commun.
19 (4) (2020) 2443–2459.

[23] X. Liu, J. Liu, A truthful mechanism for multi-access multi-server multi-task
resource allocation in mobile edge computing, Peer-to-Peer Netw. Appl. 17 (1)
(2024) 532–548.

[24] L. Xiao, X. Lu, T. Xu, X. Wan, W. Ji, Y. Zhang, Reinforcement learning-based
mobile offloading for edge computing against jamming and interference, IEEE
Trans. Commun. 68 (10) (2020) 6114–6126.

[25] Z. Gao, L. Yang, Y. Dai, Large-scale computation offloading using a multi-
agent reinforcement learning in heterogeneous multi-access edge computing,
IEEE Trans. Mob. Comput. 22 (6) (2023) 3425–3443.

[26] J. Heydari, V. Ganapathy, M. Shah, Dynamic task offloading in multi-agent
mobile edge computing networks, in: 2019 IEEE Global Communications Confer-
ence, GLOBECOM 2019, Waikoloa, HI, USA, December 9-13, 2019, IEEE, 2019,
pp. 1–6.

[27] B. Shi, Z. Chen, Z. Xu, A deep reinforcement learning based approach for
optimizing trajectory and frequency in energy constrained multi-UAV assisted
MEC system, IEEE Trans. Netw. Serv. Manag. (2024).

[28] X. Wang, Z. Ning, S. Guo, Multi-agent imitation learning for pervasive edge com-
puting: A decentralized computation offloading algorithm, IEEE Trans. Parallel
Distrib. Syst. 32 (2) (2021) 411–425.

[29] J. Baek, G. Kaddoum, FLoadNet: Load balancing in fog networks with cooperative
multiagent using actor-critic method, IEEE Trans. Netw. Serv. Manag. 20 (1)
(2023) 400–414.

http://refhub.elsevier.com/S1389-1286(24)00497-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb29

K. Jia et al. Computer Networks 252 (2024) 110665
[30] M. Xue, H. Wu, G. Peng, K. Wolter, DDPQN: An efficient DNN offloading strategy
in local-edge-cloud collaborative environments, IEEE Trans. Serv. Comput. 15 (2)
(2022) 640–655.

[31] L. Chen, G. Gong, K. Jiang, H. Zhou, R. Chen, DDPG-based computation
offloading and service caching in mobile edge computing, in: IEEE INFOCOM
2022 - IEEE Conference on Computer Communications Workshops, INFOCOM
2022 - Workshops, New York, NY, USA, May 2-5, 2022, IEEE, 2022, pp. 1–6.

Kunkun Jia earned her B.S. degree in Computer Science
and Technology from Qingdao University in 2018. She is
currently working towards her M.S. degree in Electronic
Information at Ocean University of China in Qingdao, China.
Her current research interests include Edge Computing and
Computation Offloading.

Hui Xia received his Ph.D. degree in computer science
at School of Computer Science and Technology, Shandong
University, China, in June 2013. From July 2013 to June
2020, he worked as a lecturer and associate professor
at College of Computer Science and Technology, Qingdao
University, China. Since July 2020, he is currently a Full
Professor and a Ph.D. Supervisor at the College of Computer
Science and Technology, Ocean University of China. He
was a visiting scholar at the Department of Computer
Science, The George Washington University, U.S. (2017-
2018). His current research interests focus on IoT security,
AI security, Privacy protection, Federated learning, Edge
computing and Smart healthcare. He has published over
50 scientific papers, and his research is sponsored by the
Natural Science Foundation of China (NSFC) under Grant
No. 62172377, the Taishan Scholars Program of Shandong
province under Grant No. tsqn202312102, and the Startup
Research Foundation for Distinguished Scholars under Grant
No. 202112016. He is a member of the ACM and the IEEE.
13
Rui Zhang received the M.S. degree in network security
from Qingdao University, in 2018. She is currently pursu-
ing a Ph.D. in Artificial Intelligence at Ocean University
of China, Qingdao, China. Her current research interests
include artificial intelligence and adversarial attacks.

Yue Sun earned her B.S. degree in Computer Science
and Technology from Qingdao University in 2018. She is
currently working towards her M.S. degree in Computer
Science and Technology at Ocean University of China in
Qingdao, China. Her current research interests include Edge
Computing and Resource Allocation.

Kai Wang received the B.S. and Ph.D. degrees from Bei-
jing Jiaotong University. He is currently a Professor with
the School of Computer Science and Technology, Harbin
Institute of Technology (HIT), Weihai, China. Before joined
HIT, he was a postdoc researcher in computer science
and technology with Tsinghua University. He has published
more than 40 papers in prestigious international journals
and conferences, including IEEE TITS, IEEE TNSM, ACM
TOIT, ACM TIST, etc. His research interest is in the area
of Cyber Physical Systems Security (CPSSEC), with a focus
on topics in Intrusion Detection using Lightweight Deep
Learning Models. He is a Member of the IEEE and a Senior
Member of the China Computer Federation (CCF).

http://refhub.elsevier.com/S1389-1286(24)00497-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00497-3/sb31

	Multi-agent DRL for edge computing: A real-time proportional compute offloading
	Introduction
	Related Work
	Single-agent Deep Reinforcement Learning Computational Offloading Scenarios
	Multi-agent Deep Reinforcement Learning Computational Offloading Scenarios

	Preliminary
	Network Model
	Application Model
	Local and Remote Execution Model
	Local execution
	Remote Execution

	Problem Formulation

	Algorithm design
	Preliminaries
	Multiagent Twin Delayed Shared Deep Deterministic policy gradient algorithm (MASTD3)
	Summary

	Experiment
	Parameter Setup
	Comparison Design
	Simulation Results
	Real World Data Results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

