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a b s t r a c t 

In this paper, we propose a novel shape-optimizing mesh warping method for stereoscopic 

panorama stitching, which aims to resolve shape distortion and unnatural rotation of tra- 

ditional stitching methods, simultaneously coping with the challenges, misalignment, and 

stereoscopic inconsistency. Specifically, based on the grid mesh analysis of projective warp- 

ing, we propose a differential warping method by gradually changing the inclination angle 

of each mesh line in non-overlapping regions of the image to reduce shape distortion and 

unnatural rotation. Furthermore, an extended moving direct linear transformation method 

is proposed to effectively and robustly improve alignment accuracy and maintain stereo- 

scopic consistency in multiple stereoscopic images. Finally, a consistent seam based on 

the matched feature points in the left- and right- view images of a stereoscopic image 

is designed to blend images and generate a stereoscopic panorama image. Experiments 

demonstrate that the proposed method has a superior performance compared to previous 

methods. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Stereoscopic media provides an immersive viewing experience by providing a perception of depth. With an additional

depth dimension, more challenges and constraints emerge when creating enjoyable 3D experiences. One such challenge

involves creating wide-angle stereoscopic images. Given the limitation of imaging equipment, it is difficult to capture a wide-

angle view image in a single camera shot. Image stitching methods [2,21,22] can stitch adjacent images with a small-angle

view into a single image with a wide-angle view, and this technology has been extensively examined. However, currently,

most stitching methods focus on generating 2D wide-angle images/videos, while the generation of stereoscopic wide-angle

images remains a challenging task. 

Traditionally, image stitching is implemented via parametric projective warping to ensure image alignment. However, pro-

jective warping only provides accurate alignment for planar scenes or parallax-free camera motions [8,20,24] . In other cases,

the projective warping method causes misalignment or ghosts [2,19,21,22,28] . Moreover, as a global warping model, projec-

tive warping can cause shape distortion in non-overlapping regions of the image. To resolve image alignment issues, several
∗ Corresponding author. 
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fine-tuning transformation models [13,16,27,30–32] are introduced. Although they achieve high-precision local alignment,

these methods cause shape distortion in non-overlapping regions. To cope with shape distortion, state-of-the-art methods

[4,9,14,15,25,26] employ a transition warping method from projective warping to similarity warping in non-overlapping re-

gions. However, unnatural rotation and scaling still occur when stitching multiple images to generate a panorama image. 

In this paper, we present a novel shape-optimizing mesh warping method for stereoscopic panorama stitching that can

simultaneously cope with these challenges, including shape distortion and unnatural rotation, misalignment, and stereo-

scopic inconsistency. The contributions of this paper are summarised as follows: 

(1) Based on the grid mesh analysis, we propose a differential warping method to alleviate shape distortion and non-

uniform scaling. The proposed differential warping method optimizes the image grid mesh vertices at the non-

overlapping regions by gradually changing the inclination angle of horizontal and vertical mesh lines. Compared with

other stereoscopic images stitching methods, the proposed method provides less shape/ size distortion, and less rota-

tion accumulation; and more image information for stereoscopic panorama images. 

(2) Based on our differential warping method, we extend moving direct linear transformation (MDLT) model to locally

refine stereoscopic image alignment and maintain stereoscopic consistency. Compared with current stereoscopic image

alignment methods, the proposed method avoids image salient content detection, provides more accurate alignment,

and preserves stereoscopic consistency, which benefits multiple stereoscopic image stitching. 

(3) We propose a consistent minimum energy seam by matched feature points in image overlaps. This is an important

complement of the proposed warping model that ensures the consistency of whole stereoscopic images in the process

of blending. 

The remainder of the paper is organised as follows: Section 2 provides a brief overview of related studies. Section 3 in-

troduces a few basic concepts that support the proposed method. In Section 4 , we describe the details of the proposed shape

optimizing mesh warping method for stereoscopic panorama stitching. The experimental results are presented in Section 5 .

Finally, the conclusions of this paper are provided in Section 6 . 

2. Related work 

2.1. Image alignment 

To resolve misalignment issues, state-of-the-art approaches [9,13,14,16,27,30–32] employ local fine-tune warping to

achieve high-precision local alignment. Lin et al. [16] introduced a smoothly varying affine (SVA) field to achieve local adap-

tive image stitching while maintaining global affinity. Zaragoza et al. [30] proposed an as-projective-as-possible (APAP) image

stitching with the moving direct linear transform (MDLT) method, which create multiple local parametric warps for better

alignment accuracy. Zhang et al. [31] proposed a hybrid alignment model that combines homography and content-preserving

warping to provide flexibility for handling parallax. Li et al. [13] proposed a parallax-tolerant image stitching method based

on robust elastic warping, which simultaneously achieved accurate alignment and efficient processing. Li et al. [14] proposed

a dual-feature warping for motion model estimation that combined line segments and points to estimate global homogra-

phy. Joo et al. [9] introduced line correspondences into the local warping model, however, this technique requires user

annotations of the straight lines, and the parameter settings are complex. However, the above methods are designed for the

alignment of 2D image stitching, and they are therefore not suitable for stereoscopic image stitching. With regard to stereo-

scopic images, Zhang et al. [32] and Yan et al. [27] proposed stereoscopic image stitching method based on the image’s

salient content to locally refine alignment and maintain stereoscopic consistency. Since salient content detection is complex,

the complexity of stereoscopic image panorama generation would be added if their alignment methods are applied to mul-

tiple stereoscopic image stitching. Moreover, these methods are not suitable for stereoscopic panorama images since shape

distortion is ignored. 

2.2. Shape optimization 

To cope with shape distortion, state-of-the-art methods [4,15,25,26] employ a transition warping method from projective

warping to similarity warping in a non-overlapping region. Chang et al. [4] proposed shape-preserving half-projective (SPHP)

warping for image stitching, which adopts projective warping to align images and similarity transformation to achieve a

gradual change from projective to similarity warping across the image. This method significantly reduces distortions and

preserves the image shape. However, it can introduce unnatural image rotation and structure deformations, such as line

distortions, in cases where the scene is dominated by line structures. Lin et al. [15] proposed an adaptive as-natural-as-

possible warping, which linearised the homography in the non-overlapping regions and combined homographies with a

global similarity transformation by a direct and simple distance-based weighting strategy to mitigate shape distortion. Xi-

ang et al. [26] proposed line-guided local warping with a global similarity constraint method to reduce shape distortion

for image stitching. The line-matching framework exhibits evident advantages, however it suffers from high computational

complexity, which restricts its application. Wang et al. [25] proposed a natural shape-preserving stereoscopic image stitch-

ing method based on the SPHP warping method. Similarity warping is affected by projective warping, which is subject to

unnatural rotation and scaling in the stitching of multiple images. 
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3. Review of a few basic ideas 

In this section, we briefly introduce basic image stitching that supports the description of our method, including image

alignment by the projective warping model and the moving direct linear transformation (MDLT) model. 

3.1. Projective warping 

Projective warping maps a point to another and is used in image stitching. We assume that 
(

f k = ( f x , f y ) 
T , f ′ 

k 
= ( f ′ x , f 

′ 
y ) 

T 
)

corresponds to the k th pair of matched points [5,18] in image L1 and L2. They are mapped by projective warping H with

eight parameters, i.e., ˜ f ′ 
k 

= H ̃

 f k , where ˜ f k ( ̃  f k = ( f x , f y , 1) T ) is f k in homogeneous coordinates. The expression is expressed as

the implicit condition 

˜ f ′ 
k 

× H ̃

 f k = 0 , it is written as follows: ⎡ ⎣ 

0 1 ×3 − f x − f y −1 f ′ y f x f ′ y f y f ′ y 

f x f x 1 0 1 ×3 − f ′ x f x − f ′ x f y − f ′ x 

− f ′ y f x − f ′ y f y − f ′ y f ′ x f x f ′ x f y f ′ x 0 1 ×3 

⎤ ⎦ 

( 

h 1 

h 2 

h 3 

) 

= 0 

H = 

( 

h 11 h 12 h 13 

h 21 h 22 h 23 

h 31 h 32 1 

) 

= 

( 

h 1 

h 2 

h 3 

) 

(1) 

Since only two of the rows are linearly independent, we choose the first -two rows of the above equation, that is: [
f x f y 1 0 1 ×3 − f x f 

′ 
x − f y f 

′ 
x 

0 1 ×3 f x f y 1 − f x f 
′ 
y − f y f 

′ 
y 

]
h = 

[
f ′ x 

f ′ y 

]
, 

h = 

(
h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 

)T 
(2) 

The direct linear transform (DLT) is a basic method to estimate H from a set of matched points using the linear compo-

nent, i.e., using two of the rows from Eq. (1) . Specifically, DLT is simplified as follows: 

A k h = f ′ k , A k ∈ R 

2 ×8 , h ∈ R 

8 ×1 (3) 

The above equation is a overdetermined equation, which may be estimated by the least square method. The expression

is denoted as follows: 

h 

′ = arg min 

h 

N ∑ 

k =1 

∥∥A k h − f ′ k 

∥∥2 
(4) 

3.2. Moving direct linear transformation, MDLT 

DLT is used to estimate the global transformation h 

′ from matched points, while MDLT is used to estimate local transfor-

mation h 

′ 
i,j based on feature points and the weight value. Zaragoza et al. [30] proposed as-projective-as-possible warping,

i.e., warps that aim to be globally projective, yet allow local deviations with global projective warping. They employed the

MDLT method [30] to obtain local transformation h 

′ 
i,j , which is calculated by the following weighted problem: 

h 

′ 
i, j = arg min 

h 

N ∑ 

k =1 

∥∥w k,i, j 

(
A k h − f ′ k 

)∥∥2 
(5) 

w k,i, j = max 

(
exp (−

∥∥v i, j − f k 
∥∥2 

/ σ 2 ) , γ
)

(6) 

σ denotes a scale parameter, and γ is used to prevent an excessively low weight value, γ ∈ [0, 1]. The point v i, j near the fea-

ture points is assigned a higher weight value such that the projective warp h 

′ 
i,j better respects the local structure. Moreover,

as v i, j is moved continuously in the input image, the warp h 

′ 
i,j varies smoothly. When v i, j is in a data poor or an extrap-

olation region, the values exp (−
∥∥v i, j − f k 

∥∥2 
/ σ 2 ) are insignificant. This results in point location distortion and consequently

image distortion. To avoid this, a small value γ is used to offset the weight and ensure that the image keep the original h

transform in the extrapolation region. 

4. Proposed method 

In this section, we introduce the proposed shape-optimizing mesh warping method for stereoscopic panorama stitching

in detail. Fig. 1 shows the outline of the proposed method. The input images correspond to multiple stereoscopic images,

including left view images (L1, L2, L3, L4,...) and right view images (R1, R2, R3, R4,...). To obtain a stereoscopic panoramic

image, we sequentially stitch the individual stereoscopic image. First, the adjacent images (L1,R1) and (L2,R2) are aligned
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Fig. 1. Outline of the proposed method. 

Table 1 

Important notations and variables. 

Symbol Definition 

v i, j = ( v x, i, j , v y, i, j ) i th row, j th column grid mesh vertex obtained via 

V i,j = ( V x,i,j , V y,i,j ) the projective warping method, the differential 

V ′ 
i, j 

= ( V ′ 
x,i, j 

, V ′ 
y,i, j 

) warping method, the Extended MDLT method. 

L x,i,j ( resp.L y,i,j ) i th row, j th column grid mesh line in horizontal(vertical) direction. 

θ x,i,j ( resp. θ y,i,j ) Inclination angle between line L x,i,j ( L y,i,j ) and a horizontal(vertical) line, range from 0 ◦ to 90 ◦ . 

�θ x,i,j ( resp . �θ y,i,j ) Differential angle at the i th row ( j th column) 

V o (resp. V o ) Vertex set at image overlapping (non-overlapping) region. 

( f L 2 (NO ) , f R 2 (NO ) ) Matched feature point between left view image L2 non-overlapping region and right view image R2 non-overlapping region. 

F L 2 R 2 = ( f L 2 , f R 2 ) Matched feature points set between left view image 

F L 1 L 2 = ( f L 2 , f R 2 ) L2 and right view image R2; L1 and L2; R1 and 

F R 1 R 2 = ( f R 1 , f R 2 ) R2. 

p First column number of grid mesh in non-overlapping region. 

S L ( resp.S R ) A seam in left (right) view image. 

p L ( resp.p R ) A point from the seam S L ( S R ). 

p R ( i ) x-coordinate of point p R in i th row of seam S R . 

m ( resp.n ) Total number of rows(columns)in grid mesh cells. 

 

 

 

 

 

 

 

 

 

via the projective warping matrix H , and we use differential warping to optimise projective warping and reduce severe

stretching and non-uniform enlargement of non-overlapping regions. Furthermore, based on the shape-optimization image,

the extended MDLT method is used to refine the alignment in the overlapping region and maintain stereoscopic consis-

tency. Finally, the target image L1(R1) and the warped image L2(R2) are blended by a minimised consistent energy seam to

generate the panorama image L(R). The steps are described in Fig. 1 . 

4.1. Notations and variables 

To facilitate an accurate understanding, a summary of important notations and variables is given in Table 1 . 

4.2. Shape-optimizing with the differential warping method 

In this section, we describe the proposed shape-optimization method. First, given the image alignment between L1(R1)

and L2(R2), we initially estimate the projective warping matrix H via matched feature points. These matched feature points

are pruned by an outlier elimination algorithm [6,11] . Here, feature matches are verified by random sample consensus

(RANSAC) [6] , which is a representative outlier elimination algorithm for image stitching. The proposed method is achieved

by a mesh warping technique [17,23,27,32] . The diagram of mesh warping by projective warping is shown in Fig. 2 . The
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Fig. 2. Grid mesh diagram of image warping; (a) target image L1; (b) image L2 with grid mesh cells; (c) resultant image by warping L2 with projective 

warping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

input images are divided into m 

∗n grid mesh cells ( Fig. 2 (b)). Each grid cell consists of four vertices and four mesh lines,

including two horizontal mesh lines and two vertical mesh lines. The grid mesh cells warped by H and a few important

symbols ( v i, j , L x,i,j , L x,i +1 , j , L y,i,j , L y,i, j+1 , θ x,i,j , θ y,i,j ) are shown in Fig. 2 (c). As shown in Fig. 2 (c), the grid mesh cells in the

non-overlapping region are severely distorted in terms of their size and shape. 

4.2.1. Differential warping model 

To reduce the aforementioned distortion of size and shape, we propose a differential warping method, which gradually

changes the inclination angle of horizontal and vertical mesh lines at the non-overlapping regions to update grid mesh ver-

tices. Specifically, we define the differential angle at the horizontal and vertical direction as �θ x,i and �θ y,j . The inclination

angle θ x,i,j ( θ y,i,j ) is updated by the following equation: 

θx,i, j = 

{
θx,i, j−1 − αi �θx,i , when θx,i, j−1 > δ1 

0 , otherwise 

θy,i, j = 

{
θy,i −1 , j − β j �θy, j , when θy,i −1 , j > δ1 

0 , otherwise 

(7) 

where αi and β i denote the scale factors of the differential angle, here, αi = 

i 
m/ 2 and β j = 

j 
n/ 2 . Intuitively, θ x,i,j gradually

decreases when the inclination of the grid mesh line θx,i, j−1 is larger than δ1 ; otherwise, the value of θ x,i,j is zero, i.e., the

grid mesh lines eventually trend to the horizontal or vertical line. 

To reduce size distortion and maintain the smooth transition from the overlapping to the non-overlapping region, the

initial vertices are designed as follows: { 

V x, 1 , j = V x, 1 , j−1 + �V x, 1 

V y, 1 , j = V y, 1 , j−1 + �V x, 1 tan ( θx, 1 , j ) 
�V x, 1 = V x, 1 , j−1 − V x, 1 , j−2 

j = p, . . . ., n. 

V i, j = v i, j i = 1 , . . . , m ; j = 1 , . . . , p − 1 

(8) 

where v i, j denotes the grid mesh vertex obtained by the projective warping method. p is the first column number of the

grid mesh in the non-overlapping region. To reduce size distortion, we designed the same horizontal distance �V x ,1 between

two vertices in the non-overlapping region. Thus V x, 1 , j = V x, 1 , j−1 + �V x, 1 j = p, . . . , n . When j = p, �V x, 1 = V x, 1 ,p−1 − V x, 1 ,p−2 .

Since v 1 ,p−1 , v 1 ,p−2 are in overlapping region, the horizontal distance between the two vertices in non-overlapping region is

the same as that between v 1 ,p−1 and v 1 ,p−2 in the overlapping region. Based on the initial vertices, the grid mesh size in

the non-overlapping region has a smoothly transition from the overlapping region to the non-overlapping region and thus

reduces size distortion. 

Based on the initial grid mesh vertices and the differential angle, the line expression L x,i,j and L y,i,j are updated, and the

new vertex V i,j can be obtained by the line L y,i −1 , j , L x,i, j−1 . The pseudo code of the proposed method is listed in Table 2 . 

Given the aforementioned procedure, new grid mesh vertices are obtained, and the shape-optimised image is created

by the interpolation algorithm [7] . Fig. 3 shows the result of our shape optimization warping. In this Fig. 3 (a), green grid

mesh cells are obtained by projective warping, and red grid mesh cells are obtained by the proposed differential warping

method. In Fig. 3 (a), the grid mesh cells obtained by the proposed differential warping method remains consistent with the

grid mesh cells obtained by projective warping in the overlapping region, to maintain image alignment. However, in the

non-overlapping region, our method alters the inclination angle of the grid mesh line and regularises the sizes of grid mesh
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Table 2 

Pseudo code of proposed differential warping. 

Algorithm 1. Proposed differential warping 

1. Input: V 1 , j ( j = p, . . . , n ) , V i, j (i = 1 , . . . , m ; j = 1 , . . . , p − 1) by Eq. (8) 

2. Output: V i, j (i = 2 , . . . , m ; j = p, . . . , n ) 

3. Initialise i = 2 ; j = p. 

4. repeat 

5. Update θx,i, j−1 by Eq. (7) . Update L x,i, j−1 by θx,i, j−1 and V i, j−1 . 

6. Update θy,i −1 , j by Eq. (7) . Update L y,i −1 , j by θy,i −1 , j and V i −1 , j . 

7. Update V i,j by L x,i, j−1 and L y,i −1 , j (the intersection of two lines). 

8. i = i + 1 ; j = j + 1 . 

9. until i = m ; j = n . 

Fig. 3. Shape-optimization mesh warping result. (a) Green grid mesh cells obtained by projective warping, red grid mesh cells obtained by differential 

warping; (b) warped image L2 by projective warping; (c) warped image L2 by our method. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cells. From the corresponding warped images ( Fig. 3 (b) and (c)), we can see that our result ( Fig. 3 (c)) exhibits lower shape

and size distortion than the result of projective warping ( Fig. 3 (b)) in the image non-overlapping region. 

4.3. Alignment and stereoscopic consistent optimization using extended MDLT 

The proposed shape-optimizing method can reduce shape distortion and unnatural rotation. However, the shape-

optimised images are approximately aligned and stereoscopic inconsistency exists. Hence, a local warping model is required

to refine alignment and preserve stereoscopic consistency. Stereoscopic consistency indicates the disparity consistency of

stereoscopic images. Hence, the horizontal disparity of corresponding points in left- and right- view images should be con-

sistent with that of shape optimised images; whereas vertical disparities of the corresponding points are zero. Specifically,

MDLT as a local warp model can effectuate accurate alignment for 2D images. We extend MDLT to stereoscopic images to

obtain more accurate alignment at stereoscopic image overlaps and simultaneously maintain stereoscopic consistency. 

As mentioned in Section 3 , Zaragoza et al. employed MDLT to fine-tune mesh grid vertices at image overlapping regions

to align the image based on matched feature points, while other mesh grid vertices at non-overlapping regions are preserved

as projective to the maximum possible extent. Hence, MDLT obtains accurate alignment at the image overlapping region

although it does not preserve stereoscopic consistency for stereoscopic images. To simultaneously align images and preserve

stereoscopic consistency, the grid mesh vertices set in warped image L2(R2) are divided into two sets, namely V o and V o .

The vertex set V o includes all vertices in the image overlapping region. V o includes all vertices in image non-overlapping

regions. We use extended the MDLT method to V o , to refine alignment; used the DLT method with boundary constraints to

V o to preserve stereoscopic consistency. 

In the image overlapping region, the matched feature points in image L1(R1) and L2(R2) are mapped by projective warp-

ing H L 2 O 
and H R 2 O 

. 

f L 1 = H L 2 O f L 2 , f R 1 = H R 2 O f R 2 (9)

Eq. (9) is converted to Eq. (5) . We can obtain H L 2 O 
and H R 2 O 

of each vertex V i,j by Eqs. (5) and (6) . However, there are

discontinuous grid meshes in the boundary between the overlapping and non-overlapping region, since a different homog-

raphy matrix is applied to these two regions. Based on the reference [31] , it is not necessary to perfectly align images across

the entire overlapping area; rather, it is only necessary to align images at a local region where we can determine a seam to

stitch two images together. Hence, we modify Eq. (6) . The weight value at the centre area exceeds the weight value at the

boundary vertex, i.e., a more accurate alignment is obtained at the centre area of overlaps when compared to other areas;

moreover, the boundary vertices are not subject to a significant change to maintain continuous warping. The weight value
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Fig. 4. Alignment results of feature points. (a) Feature points at overlapping region after shape-optimizing warping; (b) feature points at overlapping 

region after E-MLDT method warping. Note: green points correspond to image L1 and red points correspond to warped image L2. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w 

′ 
k,i, j 

is denoted as follows: 

w 

′ 
k,i, j = exp 

⎛ ⎝ −
∥∥V i, j − f k 

∥∥2 
. 

∥∥∥∥∥V i, j −
∑ m 

i =1 

∑ p−1 
j=1 

V i, j 

N 

∥∥∥∥∥
2 

/ σ 2 , γ

⎞ ⎠ , V i, j ∈ V o (10) 

Intuitively, the above equation assigns higher weights to data closer to V i,j at the centre of overlaps, and thus the pro-

jective warping h 

′ 
i,j respects the local structure around V i,j . In the next section, we use seam selection in the centre area to

maintain the image alignment at the image overlapping region. 

We combine Eqs. (5) and (10) to obtain the h 

′ 
i,j of each vertex V i,j ∈ V o . h 

′ 
i,j is solved by updating the weight singular

value decomposition(SVD) [30] . The new vertex in the image overlapping region is obtained as follows: 

V 

′ 
i, j = h 

′ 
i, j V i, j (11) 

Fig. 4 shows the alignment results of feature points. Green points denote feature points in the image L1, and red points

denote feature points in the warped image L2. As shown in Fig. 4 (a), severe misalignment is observed after shape-optimizing

warping. Conversely, more accurate alignment is observed in the centre region ( Fig. 4 (b), depicted by red box) where we

determine a seam to stitch the image (see next section). 

In the non-overlapping region of the image, the vertices are updated by the following DLT method with boundary con-

straints to maintain stereoscopic consistency. In the stereoscopic image, it is necessary to ensure the vertical alignment of

feature points, and thus the y-coordinates of the corresponding feature points in L2 and R2 should be equal. Hence, the

y-coordinate of f L 2 (NO ) and f R 2 (NO ) are equal, and the value corresponds to ( f y,L 2 (NO ) + f y,R 2 (NO ) ) / 2 . We use f ′ L 2 (NO ) (resp.

f ′ R 2 (NO ) ) to denote the corresponding point of f L 2 (NO ) (resp. f R 2 (NO ) ). The mapping between them is given by the following

equation: 

f ′ L 2 (NO ) = 

⎡ ⎣ 

f x , L 2 (NO) 
f y,L 2 (NO ) + f y,R 2 (NO ) 

2 

1 

⎤ ⎦ , f ′ R 2 (NO ) = 

⎡ ⎣ 

f x , R 2 (NO) 
f y,L 2 (NO ) + f y,R 2 (NO ) 

2 

1 

⎤ ⎦ 

f ′ L 2 (NO ) = H L 2 NO f L 2 (NO ) , f 
′ 
R 2 (NO ) = H R 2 NO f R 2 (NO ) (12) 

To obtain continuous grid mesh vertices, the H L 2 NO and H R 2 NO need to maintain consistency with H L 2 O 
and H R 2 O 

in

overlapping region, i.e, the vertices V i,p−1 in the overlapping region by H L 2 O 
are consistent with V ′ 

i,p−1 
: 

V 

′ 
i,p−1 = H L 2 NO V i,p−1 V i,p−1 ∈ L 2 

V 

′ 
i,p−1 = H R 2 NO V i,p−1 V i,p−1 ∈ R 2 (13) 

where V ′ 
i,p−1 

denotes the vertex obtained by Eq. (11) . Combining Eqs. (12) and (13) , we can obtain H L 2 NO and H R 2 NO by

singular value decomposition method. 

After obtaining the optimised grid mesh vertices from sets V o and V o , we apply the bilinear interpolation algorithm

[7] to provide the warped left and right view images. 
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Fig. 5. Consistent seam. Top: seam in the stitched left view image; Bottom: seam in the stitched right view image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Blending based on consistent seam caving 

To blend target and warped images, a seam with a minimum difference is selected via the seam-caving method [1] at

warped images L1 and the L2 overlapping region. The seam S L in the left view image is computed as follows: 

e L = ‖ 

I L 1 − I L 2 ‖ 

+ w G ‖ 

G L 1 − G L 2 ‖ 

E i, j = e L (i, j) + min 

(
E i −1 , j−1 , E i −1 , j , E i −1 , j+1 

)
(14)

where I L 1 and I L 2 denote the grey image value at the overlapping regions of the warped images; G L 1 and G L 2 denote the

gradients of overlapping regions of the warped images. The feature points exhibit more alignment at overlaps, and their

matched points are quickly obtained at the right view image. Thus the seam at image R1 and R2 is calculated by matched

feature points from the seam S L . Specifically, we initially determine feature points p L in S L from the matched feature points

set F L 2 ,R 2 to ensure the feature points p R are present in the right view image. Furthermore, other points, which are not from

the feature point set F L 2 R 2 in seam S R , are confirmed by p R and their relationship with the points in S R . The expression of

the seam S R is given as follows: 

S R (i ) = 

{
p R (i ) , p L (i ) ∈ S L and p L ( i ) ∈ F L 2 ,R 2 

S R (i − 1) + p L (i ) − p L (i − 1) , p L (i ) ∈ S L and p L (i ) / ∈ F L 2 ,R 2 
(15)

where p L ( i ) denotes the x -coordinate of point p L in the i th row of seam S L . We obtain the results for the seam samples via

an experiment ( Fig. 5 ). As shown in the figure, a consistent seam exists in the left view image and the right view image. 

After the seam is obtained, we use the seam and the multi-band blending algorithm [3] to compose the final left and

right view panorama. 

5. Experiments 

In this section, a few comparative experiments are conducted to demonstrate the advantages of the proposed method.

Since there is only one stereoscopic image set captured by the stereo camera FUJIFILM 3D for the stereoscopic panorama

image in Ref. [32] , we casually capture further stereoscopic image sets using the handheld stereo camera FUJIFILM 3D to

generate stereoscopic panorama images and compare the results of other methods. Each stereoscopic image set includes

multiple left view images and multiple right view images. 

5.1. Experimental result comparisons 

We conduct experiments comparing our proposed method with other existing methods, including APAP [30] , Zhang’s

method [32] , and Wang’s method [25] . The APAP method is a representative global projective warping stitching method,
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Fig. 6. Comparison results with global projective warping. Top to bottom: input left view images; APAP method result [30] ; result of the proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which addresses the problem of image alignment in a better way compared with the other global projective warping meth-

ods. Zhang’s method represents a stereoscopic stitching method. Wang’s method is a shape-optimization method for stereo-

scopic image stitching. 

Fig. 6 shows the comparison results of APAP [30] and the proposed method. The APAP method could achieve high-

precision local alignment by computing a local homography for every image patch. However, the method assumes projective

warping as global warping, which causes shape distortion in non-overlapping region. When more images are stitched to fur-

ther extend the field of view, the non-overlapping region is severely stretched or non-uniformly enlarged. As shown in the

second row of Fig. 6 , severe distortions are observed in the size and shape. To view or print the panorama image, it is nec-

essary to crop the image to a rectangle. Thus, only the region depicted by the red box ( Fig. 6 ) remains, while other regions

are excluded, leading to information loss. Conversely, our method considers reducing the shape and size distortions while

stitching two images. The proposed differential warping method optimizes the image grid mesh at the non-overlapping re-

gions by gradually changing the inclination angle of horizontal and vertical mesh lines to reduce shape and size distortion.

Thus, minimal shape distortions are noted in the non-overlapping region. From the third row in Fig. 6 , shape distortions are

minimal; moreover, more information is preserved compared with the result obtained by APAP. 

For stereoscopic image stitching, Zhang’s method [32] and Yan’s method [27] preserve stereoscopic consistency; however,

their methods consider projective warping as global warping, which causes shape distortion. We conduct a comparison with

Zhang’s method [32] , and Fig. 7 shows a comparison result. The resulting image (third row in Fig. 7 ) of Zhang’s method is

provided on the publication homepage. As shown in the figure, information loss occurs in comparison with input images

as the stitched image may be cropped owing to shape distortion. Conversely, the proposed shape-optimizing method aligns

the image, reduces shape distortion, and preserves more information. 

Fig. 8 shows a comparison of the proposed method with Wang’s method, which employs a transition warping method

from projective warping to similarity warping to reduce shape distortion. Since the similarity warping is influenced by

projective warping, the method is subject to unnatural rotation and causes more information loss while stitching multiple

images. As shown in the second row in Fig. 8 , although this method reduces shape distortion, unnatural image rotation

exists and leads to information loss while viewing or printing the panorama (only the content in the red box remains). In

contrast, our differential warping method gradually reduces the inclination angle of horizontal or vertical mesh grid lines

in non-overlapping regions until the inclination angle is zero. The proposed method benefits from multiple images stitching

without shape distortion and unnatural rotation accumulation. From this figure, we can see the proposed method could

reduce shape and size distortion, avoid unnatural rotation, and preserve more information. More quantitative comparison

results are shown in Fig. 13 and Tables 3–5 . 

Figs. 9–12 show the results of the proposed method for stereoscopic panorama images. The proposed method is observed

to reduce shape distortion, align the input images without ghost, and maintain stereoscopic consistency, thereby avoiding

an uncomfortable viewing experience ( Table 4 ). 

5.2. Quantitative evaluation 

In this section, we conduct a quantitative analysis to verify the effectiveness of the proposed method. The proposed

method is compared with other methods based on four aspects, including the information and the cropped ratios [31] , root
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Fig. 7. Comparison of the results with Zhang’s method [32] . From top to bottom: input left view images; result of Zhang’s method; result of proposed 

method. 

Fig. 8. Comparison of proposed method with Wang’s method [25] . Top to bottom: input left view images; result of Wang’s method; result of proposed 

method. 

Table 3 

RMSE of matched feature points. 

Dataset Fig. 6 Fig. 7 Fig. 9 Fig. 10 Fig. 11 (L) Fig. 11 (R) Fig. 12 

APAP 3.26 2.27 1.53 3.04 2.59 2.39 –

Zhang’s 4.19 3.45 3.78 4.26 4.43 3.24 –

Wang’s 3.22 2.12 2.23 2.98 2.32 2.13 3.60 

Proposed 1.55 2.07 1.45 2.02 1.86 2.12 2.77 
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Table 4 

Average absolute vertical disparity(/pixel). 

Dataset Fig. 6 Fig. 7 Fig. 9 Fig. 10 Fig. 11 (L) Fig. 11 (R) Fig. 12 

APAP 4.59 5.13 6.15 4.62 3.78 3.56 –

Zhang’s 1.34 1.65 1.46 1.23 1.02 1.15 –

Wang’s 1.32 1.81 1.41 1.21 1.01 1.20 2.03 

Proposed 1.28 1.75 1.39 1.21 0.94 1.07 1.65 

Table 5 

Average evaluation scores. 

Dataset Fig. 6 Fig. 7 Fig. 9 Fig. 10 Fig. 11 (L) Fig. 11 (R) Fig. 12 

APAP 1.09 2.22 2.95 1.96 2.86 2.85 –

Zhang’s 1.46 3.29 3.70 2.83 3.69 3.70 –

Wang’s 4.03 4.29 4.38 4.09 4.49 4.26 4.14 

Proposed 4.73 4.63 4.57 4.22 4.56 4.58 4.52 

Fig. 9. Stereoscopic panorama stitched results. From top to bottom: input left view images; input right view images; output left view panorama image; 

output right view panorama image; anaglyph stereoscopic panorama image. 

 

 

 

 

 

 

mean squared error (RMSE) of matched feature points [10] , average absolute vertical disparity (AVD) [16,20] , and a user

study [15,16] . 

According to the comparative method in Ref. [31] , we compare the information ratio and the cropped ratio of the stitch-

ing result of the proposed method and others. Given images to be stitched, the desired final image should contain as much

information as possible. We use the information ratio as an indicator. Since the image is ultimately stored as a rectangular

image, an information ratio value that is closer to one will provide more useful information that is used to illustrate the im-

age in the stitched result. Hence, we use cropped ratio to measure useful information. The information ratio I and cropped
Ir 
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Fig. 10. Stereoscopic panorama stitched results. From top to bottom: identical to Fig. 9 . 

Fig. 11. Stereoscopic panorama stitched results. From top to bottom: identical to Fig. 9 . 
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Fig. 12. Stereoscopic panorama stitched results. From top to bottom: identical to Fig. 9 . 

Fig. 13. Comparison of proposed and other methods with respect to information and cropped ratios. 

 

 

 

 

 

 

ratio I Cr are defined as follows: 

I Ir = 1 − N blackpixels 

N St it ched 

I Cr = 1 − N Cropped 

N St it ched −N blackpixels 

N St it ched = W St it ched · H St it ched N Cropped = W Cropped · H Cropped (16) 

where N blackpixels is the total number of black pixels (or white pixels) in the background of the stitched result; W Stitched and

H Stitched are the width and height of the stitched image, respectively. W Cropped and H Cropped are the width and height of the

cropped result, respectively. The information ratio represents the ratio of the remaining pixels except the black pixels in

the stitched result to the total number of pixels. The cropped ratio represents the ratio of the information contained in the

cropped image to the information of original stitched result. The results of information ratio and cropped ratio are presented

in Fig. 13 . Since APAP and Zhang’s method generate severe shape distortion that prevents image panorama generation when
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Table 6 

Paired samples t -test for user study results. 

Pair Mean( μ) Std. Deviation( σ ) p -value 

APAP & 2.3217 0.7241 0.001 

Proposed 4.5483 0.1727 

Zhang’s & 3.1117 0.8793 0.013 

Proposed 4.5483 0.1727 

Wang’s & 4.2567 0.1732 0.025 

Proposed 4.5483 0.1727 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

more images are stitched for panorama images, there are no corresponding values of Fig. 12 in Fig. 13 (a) and (b). As shown

in Fig. 13 (a) and (b), the information ratio and cropped ratio of APAP and Zhang’s method are lower than other methods

since their methods assume projective warping as global warping, which causes shape distortion in non-overlapping regions.

Wang’s method considers shape distortion, and thus the information ratio and cropped ratio are higher than the values of

APAP and Zhang’s method. However, Wang’s method can cause image unnatural rotation, and the values of Wang’s method

are lower than the values of proposed method. As shown in Fig. 13 (a), the information ratio of the proposed method is

much higher than that of other methods, which means that our method contains more information in the stitched image.

As shown in Fig. 13 (b), our method has a higher cropped ratio in comparison to other methods, which means that our

method can better retain useful information in the final image. 

According to Ref. [10], we use the root mean squared error (RMSE) of matched feature points at centre region of the over-

lapping region in the left view images L1 and L2 to quantitatively evaluate the quality of alignment in different approaches.

Table 3 lists the RMSE of different approaches. Zhang’s method employs the traditional global projective warping method to

stitch images, which can cause image misalignment. Hence, the values from Zhang’s method exceed those of other methods

for all images. The APAP method can better address the problem of image alignment compared with the global projective

warping method; Wang’s method and the proposed method consider image alignment based on the APAP method, hence

their values are lower than those of Zhang’s method. However, the proposed method assigns higher weights to data closer

to the centre of overlaps, and hence has a more accurate alignment at that centre area. 

The viewing experience of stereoscopic images is affected by various factors [10,12,29] , and there is no general objective

measurement of the quality of stereoscopic stitched image. Specifically, vertical disparity affects stereoscopic consistency,

and it is widely accepted that large vertical disparity increases visual discomfort. Therefore, the average absolute verti-

cal disparity (AVD) [27] (in pixels) at all feature points is used to evaluate different methods. Table 4 shows the AVD of

panorama stitched stereoscopic images. Since APAP and Zhang’s method generate severe shape distortion that prevents im-

age panorama creation when more images are stitched together, there are no corresponding values for Fig. 12 in Table 4 . As

shown in Table 4 , the AVD from APAP exceeds that of the proposed method in all the image pairs, because the method does

not consider stereoscopic constraints. Zhang’s method, Wang’s method, and the proposed method all consider stereoscopic

consistency, and produce smaller AVD when compared with APAP method. The proposed method considers shape-optimizing

warping and avoids unnatural image rotation; thus, it is superior to Zhang’s and Wang’s method in terms of stereoscopic

panorama images. 

To verify the effectiveness of the proposed method, we conduct a user study to compare the visual quality of the stereo-

scopic images obtained by APAP, Zhang’s method, Wang’s method, and the proposed method. A total of 12 participants with

normal stereoscopic vision were invited to participate in the user study. For each sample, input images were placed on the

top of the screen (unchanged) and each stitched panorama image obtained by the aforementioned method was placed on

the bottom in a random order. The participants were asked if they felt comfortable with the factors, including misalignment,

shape distortion, and eye fatigue. Participants rated images from 1 (very uncomfortable) to 5 (very comfortable). 

Since APAP and Zhang’s method generate severe shape distortion that prevents image panorama creation when more

images are stitched together, there are no corresponding values for Fig. 12 in Table 5 . As shown in Table 5 , the evaluation

scores of APAP and Zhang’s method are lower than other methods, since APAP produces undesired vertical disparity and

shape distortion, which lead to uncomfortable 3D perception. Zhang’s and Wang’s methods maintain the consistency of

input stereoscopic images, which made their scores higher than the scores of APAP. However, Zhang’s method can cause

shape distortion because of the assumption of projective warping as global warping; Wang’s method can cause unnatural

image rotation because it takes a transition from projective warping to similarity warping. Hence, their scores are lower

than the scores of proposed method. 

According to the statistical analysis from Ref. [15] , we conduct the significance difference analysis using paired samples t -

test method. The average scores ( μ), the standard deviations ( σ ), and the p -values of the paired two sample t -test are listed

in Table 6 . From this table, we observe that the average evaluation scores of our method are higher than those of other

methods, which demonstrates our results deliver a more comfortable 3D viewing experience than the results obtained by

other methods. We also observe that all of p-values are smaller than 0.05, which demonstrates that the difference between

the results obtained by the proposed method and those obtained by other methods is very significant. From these exper-

imental results, we conclude that the proposed method provides more comfortable viewing effects for stitched panorama

images by considering shape optimization, image alignment, and stereoscopic consistency. 
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6. Conclusion 

In this paper, we present a novel shape-optimizing mesh warping method for stereoscopic panorama stitching. First, our

differential warping method based on the analysis of projective warping mesh grid gradually changes the inclination angle

of horizontal and vertical mesh lines in non-overlapping regions to update mesh vertices until the inclination angle is zero.

The proposed method solves the problem of shape distortion and unnatural rotation of existing approaches. In addition,

we extend the MDLT method to stereoscopic image stitching to simultaneously guarantee image alignment and stereoscopic

panorama consistency. Finally, based on matched feature points, we design a consistent seam in left- and right- view images

to generate the stereoscopic panorama image. The stitching results are evaluated with experiments involving visual images

and quantitative evaluation. Experimental results show that the proposed method successfully reduces shape distortion and

avoids unnatural rotation, aligns images, and preserves stereoscopic consistency for stitching multiple stereoscopic images. 
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