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ABSTRACT

Now the handling of user preference is becoming an increasingly important issue in database fields where
they capture soft criteria for queries. A broader category of qualitative preferences with dependent rela-
tions among multiple attributes is widely existing, which is CP-nets. In this article, we focus on designing
the operators of preference composition for CP-nets. Firstly, we extend Pareto composition to our model
by including equivalence relation ~, incomparability relation || and conflicting relation L, which can pre-
serve a strict partial order and conditional associativity. On this basis, two questions are solved: (a) the
generation of satisfiability sequences for CP-nets, (b) the top-k queries of relational database with CP-nets
preference. For (a), a CP-net is induced into multiple tables, consequently the strong dominance tests
between outcomes can be solved by using preference composition instead of using induced preference
graph of CP-nets. For (b), we adopt the concept of Query Lattice to provide a natural semantics for the
block sequence answering a preference query, where two algorithms (called QOCP and IQOCP) are intro-
duced. These questions are solved efficiently and effectively at the perspective of combination of graph
model and relational database.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the research on preferences has attracted broader
interest in the database research community. Users would like
to describe features of data that are potentially useful in some
tasks, or in other words features that best suit their preferences.
Modern database systems should then be able to process queries
enhanced with preferences, and such queries are called preference
queries (Arvanitis & Koutrika, 2012). There are already promising
applications of preference queries in the area of personalized
search engines and recommender systems (Liu, Wu, Feng, & Liu,
2015). Since in traditional databases or search engines, the user’s
preferences were not considered, where query conditions are
considered as hard by default and a nonempty answer is returned
only if it satisfies all query criteria. For example, the following
database query clause to SQL from the relation Dinner

Where Drink="wine’ and Staple='steak’ expresses a very clear
and specific query condition. It indicates that the user must know
the complete information of the query object. Therefore, in this
context, the user can face either of two problems: (1) the data
can’t exactly match the query (query criteria are too restrictive),
so the result is empty set or (2) there are too many answers
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(query criteria are too weak). In fact, the user’s preferences usually
are vague, for example, I would rather express the following
preferences over my dinner configurations:

“I prefer red wine to white wine if served a steak,

and white wine if served some seafood”.

Where the constraint degree is no longer 0 or 1, it is described
as soft constraint, and all outcomes are sorted according to how
closely they match the query conditions, called “Personalized
Query” of relational database (Arvanitis & Koutrika, 2012).

In the preceding work of preference applications, the prefer-
ence modeling is central. There are quite a few approaches in
the literature that deal with preference representation and try to
reach meaningful conclusions regarding the desired answers of a
database query from different perspectives. However, to the best
of our knowledge, an important category of preference models
is missing, for preferences hold unconditionally in the database
query with preference studied so far, namely, there are no serious
attempts made to realize queries of preference with dependencies
(called conditional dependence preferences), which is necessary,
because in reality there are two features in the decision making
system:

(1) Multiple attributes. The decision objects are usually not
described so simply, and preferences may be represented
as a set of constraints over a set of decision variables. For
example, when a user wants to buy a car, his preferences
focus here on various attributes: make, type, price, color,
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etc., and the degrees and orders of concerns over preference
attributes are different, which will lead to different final
selections.

Conditional dependence preferences. The user preference for
one attribute can be impacted by other attributes. For in-
stance, the selection of drink type depends on the matching
staple food, the type of the car determines the selection of
its color.

—
\S)
—

Not only in daily life, but also in social choice, database query,
collaborative filtering system and recommendation system, the
qualitative preferences with dependencies among multiple at-
tributes are widely existing. Thus, the way to describe a broader
category of preferences is required. A commonly used graphical
notation for their representation is CP-nets in artificial intelligence.
CP-nets (Conditional Preference networks) can be used to describe
the implied qualitative preference relations in the situational
preference information with a relatively tight, intuitive, structured
qualitative preference. The main advantage of this tool is that it
is a qualitative graphical tool, and it can reflect the dependencies
among preferences.

Observing previous studies on CP-nets were either based on in-
duced preference graph of CP-nets (e.g., (Liu, Liao, & Zhang, 2012)
solved the strong dominance test by Warshall algorithm and (Sun
& Liu, 2015) presented the generation algorithm of satisfiability
sequences) or by means of quantitative methods (e.g., (Mindolin &
Chomicki, 2007)), clearly, there are some defects in these ways. As
we all know, getting an induced preference graph itself is a very
difficult work, involving its storage, construction, properties, and
so forth. There are few works about these and no corresponding
efficient generation algorithm is introduced so far, and classical
methods for them result in exponential computational complexi-
ties and (Goldsmith, Lang, Truszczynski, & Wilson, 2008) showed
that dominance test in CP-nets is PSPACE-complete. As to solving
questions in qualitative model by using quantitative methods, it
is a concession or unwilling choice, since the expressive power
of quantitative way is weaker than qualitative one and, thus, will
lose a lot of information.

Instead, our work is different from existing approaches on
executing and optimizing queries with preferences, we study
preference query based on CP-nets from the perspective of graph
model. In our opinion, there is significant relationship between
CP-nets and relational database, CP-nets are divided and induced
accordingly into multiple database tables. Thus we extend the
Pareto composition in this work (Section 4). We realize the
generation of CP-nets satisfiability sequences by means of pref-
erence composition theory closer to (Georgiadis, Kapantaidakis,
Christophides, Nguer, & Spyratos, 2008), instead of using induced
preference graph (Sun & Liu, 2015) (Section 5). Furthermore, we
also aim to realize the top-k queries in the context of databases
with CP-nets preference, that is, to retrieve the best k outcomes
(or tuples) from tables, in the most extreme cases, which is the
Cartesian product of all the attribute domains (Section 6).

In summary, the main contributions of this article are as
follows:

(1) An extended Pareto composition mechanism to CP-nets,
which can preserve a strict partial order composition result
and conditional associativity.

(2) How to store a CP-net (not mentioned in current CP-nets
studies) is solved by inducing it into multiple database
tables.

(3) An efficient means of computing the strong dominance
test (i.e., to perform preferential comparison between out-
comes) relying not on the induced preference graph but
on the preference graph itself and the extended preference
composition mechanism.

(4) We realize the top-k queries of relational database with
conditional ceteris paribus preferences. The algorithms
(QOCP and IQOCP) are proposed on the basis of query-
rewriting algorithm, named LBA (Georgiadis, Kapantaidakis,
Christophides, Nguer, & Spyratos, 2008) by adding two new
operators: the composition operator of non-dependent rela-
tions and the composition operator of dependent relations.

2. Related work

Much work has gone into embedding the notion of prefer-
ence in database systems from both the modeling and implemen-
tation aspects. Database also bring a whole fresh perspective to
the study of preferences, both computational and representational
(Stefanidis, Koutrika, & Pitoura, 2011). From a representational
perspective, the key question is how to represent and incorpo-
rate preferences in database query. Chomicki (2003) and Kiel3ling
(2002) studied preference relations between database tuples using
logical formulas or preference constructors, which are qualitative
approaches; whereas Agrawal and Wimmers (2000) and Koutrika
and loannidis (2004) specified preferences using scoring functions,
every database tuple is assigned a numerical score, which is quan-
titative approach. However, not every intuitively plausible prefer-
ence relation can be captured by scoring functions, so in terms
of expressive power, the qualitative specification of preferences is
more general than the quantitative one (Abbas & Bell, 2012; Choo,
Schoner, & Wedley, 1999; Stefanidis, Koutrika, & Pitoura, 2011).
From a computational perspective, the key question is how to ef-
ficiently process preferences in database queries. One way is by
expanding regular database queries with conditions that express
a predefined set of user preferences (user profile), adopted by
van Bunningen, Feng, and Apers (2006); Georgiadis, Kapantaidakis,
Christophides, Nguer, and Spyratos (2008); Kostas Stefanidis
(2007); Miele, Quintarelli, and Tanca (2009), etc. Another way is
by extending query languages with preference operators, such as,
the Winnow operator (Chomicki, 2003; Torlone & Ciaccia, 2002a),
and Preference Selection operator (Kief3ling, 2002), and so on.

For CP-nets, some detailed syntaxes, semantics, and appli-
cations have been described by Boutilier, Brafman, Domshlak,
Hoos, and Poole (2004) and Goldsmith, Lang, Truszczynski, and
Wilson (2008). Recently, there have also some researches on sub-
classes of CP-nets: TCP-nets (Tradeoff-enhanced CP-nets) (Brafman,
Domshlak, & Shimony, 2006) and Cl-nets (Conditional Important
networks) (Bouveret, Endriss, & Lang, 2009), which mainly add
some elements reflecting the importance of attributes. Cornelio,
Goldsmith, Mattei, Rossi, and Venable (2013) presented a two-fold
generalization of conditional preference networks that incorporates
uncertainty. Ciaccia (2007) programmed a new SQL statement by
using CP-nets as the preference database query language; Endres
and KieRling (2006) realized how to turn the query of TCP-nets to
a database query; Santhanam, Basu, and Honavar (2010) presented
an earlier algorithm for testing dominance in TCP-nets by encoding
the TCP-net semantics (i.e., the induced preference graph) into a
Kripke structure and then analyzing the Kripke structure using a
model checker. Bosc, Hadjali, and Pivert (2011) investigated how to
realize preference query with CP-nets and other weighted Boolean
query. As a model of qualitative preference, there are also some
reasoning tasks, such as satisfiability, consistency, connectivity,
boundedness, etc. Liu (2011); Liu and Liao (2015); Liu, Liao, and
Zhang (2012) analyzed the expressive power of CP-nets, proved
completeness and consistency theorems. Sun and Liu (2012) con-
cluded that the consistency is equal to the satisfiability of CP-nets
and did the consistency reasoning. There are also a few recent
proposals of using CP-nets to represent database preferences, such
as Hierarchical CP-nets extended CP-nets by defining different
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Fig. 1. CP-net for “My Living Room Decoration” .

priorities over descendant and ancestor attributes in Mindolin and
Chomicki (2007). Ciaccia (2007) considered incomplete CP-nets
where preferences were only partially specified resulting in pairs
of tuples being incomparable or indifferent in some contexts.
Endres and KieBling (2006) translated CP-nets into expressions in
the formal preference language over strict partial orders.

3. Basic definitions

Definition 1. Given an attribute set V = {X; --- X} over which the
user has preferences, such that D;, 1 < i < n, is the domain of
the attribute, the decision space €2 =D; x --- x D, is a Cartesian
product of all attribute domains, and if 0 € €, o is an outcome.

For o and o', if there is only one attribute value is different
and all others are the same, they are called swap outcomes. And
if there exist dependency relationships among these attributes,
namely the user preference for X; depends on attribute set Xs, we
say that X; is the father of X;, denoted as pa(X;) = X;.

Definition 2. A relation > is a strict partial order over £, if and
only if, > is anti-symmetric (Yo, 0')(0, 0/ € QA0=0'A0" # 0 —
o’+o0), and transitive (Yo, o/, 0’')(o, 0/, 0’/ € QAr0>0'A0'>0" —
0>0"").

Given a pair of outcomes o and o/, if the relation o>0’ holds,
we say that outcome o is preferred to o’; ol|o’ (i.e., 0 and o’ are
incomparable for lack of more information) iff, for o, 0’ € €, o*0’
and o’'+o0 hold. When o>0’ or o||0/, it is written as o>y0". > is
the preference set expressed by CP-nets.

Definition 3. A CP-net is a directed graph C, formally defined as
the quadruple:

C=<V,Dom,D,CPT > .

Where V is the set of attributes (vertices). Dom is the set of
value domains for all attributes in V, for X; € V, Dom(X;) is the
value domain of X;, D is the dependency set (directed edges,
i.e., for an directed edge, the values of starting point affect the
preference of end point) among V. CPT is the set of conditional
preference tables for all attributes in V, ie., for X; € V, CPT(X;) is
associates a total order >i, with each instantiation u of X;’s parents
Pa(X;) = U, denoting under the different assignments of pa(X;), the
user’s preference orderings for Dom(X;). To simplify the work, we
only discuss binary CP-nets (i.e., |Dom(X;)| = 2) in this article.

Example 1. (My Living Room Decoration) Consider the simple
CP-net in Fig. 1 that expresses my living room configurations. This
network consists of three variables C, W and S, standing for the
curtain, wall color and sofa, respectively. Now, I strictly prefer light
color (G, W) to dark color (C4, Wy) for curtain and wall, while
my preference between coriaceous sofa (S¢) and fabric sofa (Sy) is
conditioned on the curtain and wall selected: I prefer coriaceous
sofa if the same color for curtain and wall selected, and fabric

sofa if different colors selected for them. Fig. 1 shows the CP-net
C=<V,Dom,D,CPT >.

Definition 4. Consider a CP-net C, the directed graph G = (<, IE)
is the preference graph over outcomes induced by C (i.e., induced
preference graph), of which, 2 is the set of outcomes (vertexes),
IE is the set of directed edges composed of all the swap outcomes
such that o>0’ holds.

Note that for a binary CP-net with n variables, in its corre-
sponding induced preference graph, there are 2" vertices and n x
2"-1 edges. Therefore, it is a hard work to obtain the induced pref-
erence graph, let alone use it to solve other problems in CP-nets.

4. Preference composition

In order to facilitate the next work, we define some preference
relations over attribute domains, that is, a preference over an at-
tribute A is defined by a preference expression P4. Such statements
can actually define binary relations in example 1 as follows:

(1) Pc: pa(C) =@, C is preferred to Cy;

(2) Py: pa(W) =@, W, is preferred to W;

(3) Ps: pa(S) = (C,W), the preferred relations between S. and
Sy depend on the values of C and W.

Given a set of preferences, preference composition seeks to
combine them. The preferences to be composed correspond to
variant preferences of a user. With the increasing popularity of
social networks, composition is central for the success of per-
sonalization. One of these qualitative mechanisms for composing
preferences is Pareto preference composition (Stefanidis, Koutrika,
& Pitoura, 2011), however, it is not associative when used in an
n-ary composition, n > 2. Thus we extend the Pareto composition
to our model as follows:

Definition 5. Given two preference relations Py, Py over a CP-net,
we define an induced relation ~Pyy = >Px ® >Py over Dom(X)
x Dom(Y), as:

X y) =xy YV Xax X Ay =y Y) v X >x X' Ay =y Y)
. y) ~xy (. Y)iff (x=x X)A Y~ Y)

) llxy K.y if xlx XHvylly y)

(x,¥) Lxy (X', y') otherwise.

In which, > denotes the ”"at least as preferable” relation
(Georgiadis, Kapantaidakis, Christophides, Nguer, & Spyratos,
2008), including > and ~ . ~ is an equal preference relation, in
our study, x ~ x’ only means that x and x’ are the same value for
the attribute X. | denotes a kind of uncertain preference relation,
ol o’ means that we can not now compare the two outcomes (o
and o0’) owing to lack of more information, in other words, we can
not determine whether 0>~0’ or o’>~o0. At the same time, it is an
unstable relation, since oo’ may be converted to o>0" or o'>o0
by taking the transitive closure of the direct relation . While L
means a kind of conflicting relation, for the composition outcome
o, preference of some attributes is prior to o/, whereas preference
of others is inferior to o’. Here our choice relies solely on partial
orders, without any further assumptions.

Theorem 1. This composition operator can preserve a strict partial
order composition result.

Proof. There are three kinds of preference relations >, || and L.
They all satisfy the properties of a strict partial order: irreflexivity
and transitivity. Therefore, strict partial order is preserved by
extending Pareto composition. O

Theorem 2. The associativity can also be guaranteed, if there are no
dependencies among these preference attributes to be composed.
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P,  Pcws=(Pc @ Pw) ® Ps

PC Pw

Fig. 2. Preference expression tree and composition operator.

Proof. Clearly, for preference relations Py, Py, Pz, if there are no
dependencies among them, the following formula holds:

(>PX ® >Py) ® >PZ E>PX ® (>Py ® >Pz).

For example, consider preferences Py, Py, Pz, suppose we first
apply Definition 5 on X with x>yx' and Y with y>yy/, the result
would be (x, y)>xy(x/, ¥'), then we went on to compose this
intermediate result with Z (z>-,Z'), the final result would be (x, y,
Z2)>xyz(x', y', Z). Now we first composed Py and Py, then went on
to compose this intermediate result with Py, the final result would
also be (x, y, z)>xyz(x', ¥/, 7). it’s similar for other composition re-
lations, therefore, in this case, the associativity can be guaranteed.

However, for CP-nets, there usually exist dependencies among
preference relations. For example, assuming pa(Y) = X, pa(Z) =Y,
we can not compose Py, P; firstly. Therefore, the above formula
does not hold.

Based on the above, we can draw a conclusion: For CP-nets
preferences, the associativity can be guaranteed by the extending
Pareto composition operator, if there are no dependencies among
these preference attributes to be composed. Therefore, we call it
as “conditional associativity”. O

Associativity and closure of preorders under the extended
Pareto composition enable a bottom-up evaluation of arbitrary
preference expressions. In order to compose CP-nets preferences,
the rule of composition is defined as:

Rule 1. All attributes are composed in this order: attributes with-
out parents are finished firstly, and then, in turn, compose the
attribute whose parent have been composed, until all attributes
are finished. At the end of each composition, all the || relations
should be adjusted according to the transitivity of other strict
partial relations, namely >.

According to the extended preference composition mechanisms
and rule 1, we define the preference expression tree and the
preference composition operator ® to carry out the pairwise
compositions from leaf to root just like shown in Fig. 2.

5. CP-Nets satisfiability sequence
5.1. Definition of satisfiability sequence

As a language of preference representation, the natural question
is whether a CP-net is satisfiable, that is, whether there exists an
outcomes flip sequence satisfying all the preference statements.

Definition 6. Let 2 be the decision space of a CP-net C with
n vertices, C is satisfiable iff there exists at least one collating
sequence >y including all outcomes in €2 such that:

01 >NO2 >NO3 >N --->NOj--- >N O.

In which, o0; € Q,k=2" this sequence is called satisfiability
sequence I.

It is a well-known result that every acyclic CP-net is satisfiable,
whereas the satisfiability of a cyclic CP-net can’t be guaranteed,
and for a satisfiable CP-net, the satisfiability sequence is not
unique (Sun & Liu, 2012), I € L, L is the set of all satisfiability

Table 1
Correspondences between CP-nets and relation tables .
CP-nets Relation tables Symbolism
Attribute Field X1, Xa, o+, Xn
Attribute set Field set Vv
Domain of attribute X;  Domain of field X;  Dom(X;)
All outcomes O Tuple set 0 =Dom(V)
Feasible outcomes O’ Relation 0’'cDom(V)
Rc Rw
C w

Cq Wy
\ / N
C w S
CPT(S) A

Crn Wi | Se>S5f I Wi S,
CrnWa | S >8. l C 4 Sy
Induced G Wy Sy
Can Wi | §>S C Wa Se
CanWa | Se>58 Ca 4 S
Cu 4 Se
Ca Wa Se
Cu Wa Sy

CP-net Induced tables

Fig. 3. A CP-net is induced into tables.

sequences for a CP-net. It is necessary to obtain these sequences,
especially it is the crux of the recommendation systems and
personalized database query systems.

5.2. Induced tables

In the following, we shall present a new approach to generate
the satisfiability sequences by preference composition mecha-
nisms. In fact, observing CP-nets and relation tables in database,
there are some correspondences between them, shown in Table 1.

Besides that, the user’s preference ordering on Dom(X;) (i.e.
CPT(X;)) can be encoded by the appearing orders of tuples with
the same assignment of pa(X;) in table. Based on these relations
presented, we can induce a CP-net into multiple relation tables
according to Rule 2.

Rule 2. Every attribute X; in a CP-net is induced into a table Ry,
where the field set is Pa(X;)UX;, (that is, X; and all its parent
nodes) and the tuple set is the Cartesian product of its all field
domains. Each row is attached a line number, for the same assign-
ment of Pa(X;), the row containing the preferred value of Dom(X;)
always appears ahead of the row containing the other one.

Examples of induced tables are depicted in Fig. 3. As it can be
seen, the CP-net (in Example 1) is induced into three tables: R,
Ry and Rs, where V(Rc) ={C}, V(Rw) = {W}, V(Rs) ={C,W,S}.
For simplicity, line numbers in all induced tables are overlooked
because we just want to explicate the process of preference
composition.

5.3. Generation of satisfiability sequences

Next, we describe process of preference composition expressed
by CP-nets in Fig. 4. For P ® Py, let Rc and Ry, be merged
into table Rqy by Cartesian product operation, to better identify
every tuple, we add a field ID to Rqy. Over Rcy, Paoy is induced
using extended composition (in Definition 5), which is: t;>ty,
t1>~t3, t1>ty, ty>~ty, t3~t4 and t, Lt3. For instance, for tuples t; and
ty, t](C)>Ct2(C)At1(W)>W[2(W), SO t1>cwta; for tuples ty and t3,
t2(O)=ct3(OAG(W)=wia(W), so & Lewts.

Then, we merge Rqy and Rs into Reyys, that is the nature of nat-
ural join due to the existence of common columns (C, W), and all
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Rc Ry Cia W | S >5

C W CPT(S) [ CirWal| S >S5

C W, Con Wi | 5 >8.
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P(‘: C/ >Cm\ ®/Pw: W/ >Wd C w S
Re X Rw @] Wi Se
l C Wi Sy
Rew D c W C Wa Sy

Ci Wa Se

h Ci 4 Ca Wi Sy
Ca Wi Se
[2) C Wa / Cy W, S.

3 Ca Wi ® Ca Wa Sr
s Cy Wy Rews l(.v Wwn S
Pcys
' D @ w S 01>02  01>03
Pcwy
\ 01>04 01>05
“ \ 01 @] 4 Se
> > 5 > = 0= 01>06 01>07
= Y Y Y Y Y
Pe N~ S 02 G Wi N 01>08 02>03

02>04 0205
Se

02>06 02>07
04 G Wa S ‘ 02>03 03los

S. o03los 03>07

03>08 04>03

%6 Ca Wi S 04105 04log

07 Cq Wa Se 04>07 04>03
05>07 05>08

03 Cq Wa Sr
/ 0505 06>07

T 06>08 0708

Fig. 4. Process of preference composition.

tuples from o0; to og constitute the decision space 2 for CP-nets.
Over Reys, Pcws also can be induced by the same way, which is:

01 >0 03 ||O3 03105 04>03 05>07 O0g>05 O07>0g
01>03 0>04 03105 04105 05>03 Og || 07

01]los4 0205 03>07 04106 0g > 0g

01>05 02-0¢ 03]l05 04] 07

01 ]l 06 0207 04 > Og

01 >07 03 > 0g

01 || 0s

Now, we adjust all the || relations by taking the transitive
closure of the direct relation >, and then obtain the final strong
dominance tests (DT) as follows:

01 >0y 02>03 03105 04>03 O053>07 Og>0s5 07>0g
01 >03 03 >04 03106 04105 053>0g O0g> 07

01 >04 03 >05 03>07 0410g Og > Og

01 >05 0 >0 03 >0g8 04 >07

01 >0 03 > 07 04 > Og

01 > 07 03 > 0g
01 > Og

In addition to the explicit listing of dominance tests between
tuples which could be obtained from Pcys, a more meaningful
work is by using Pcys to construct the simplified induced graph of
CP-nets (T) shown in Fig. 5.

Notice that this simplified induced graph is a Hasse diagram, it
gets rid of some direct-connected edges from a vertex to another
vertex because there are transitive paths between them. Hence,
from the Hasse diagram, we can get the block sequences of

CaWaSy

Simplified induced graph of CP-nets

Induced graph of CP-nets

Fig. 5. Comparison of simplified graph and induced graph of CP-nets.

satisfiability, that is,

04 > 03

01>02>{ }>O7>03

Og > O5
Even more specifically, according to the definition of CP-nets
satisfiability, we have the following satisfiability sequences:

l]: 01>N02>N04>NO3>NOg>NO5>NO7>NOg

12: 01>N02>N04>NOg>NO5>NO3>NO7>NOg

132 01>N02>N04>NOg>NO3>NO5>NO7>NOg

142 01>N02>NOg>NO4>NO3>NO5>NO7>NOg

15: 01>N02>NOg>NO4>NO5>NO03>NO7>NOg

16: 01>N02>NO0g>NO5>N04>NO3>NO7>NOg

As is shown above, the algorithm of satisfiability sequences
generation (called SSG) (Algorithm 1) is presented as follows.

Algorithm 1
(SSG).
Require: a CP-net C
Ensure: all satisfiability sequences L
1: C is induced into multiple relation tables according to
Rule 2;
2: Carry out the preference compositions to solve the dom-
inance tests (DT) according to Rule 1;
3: Construct the simplified induced graph of CP-nets (T) by
using DT;
4: Obtain all the satisfiability sequences L from T;
5: Return L.

Algorithm of satisfiability sequences generation

6. Top-k queries of database table

In the following section, we shall turn to the study of top-k
queries of database table with CP-nets preference.

Definition 7. Given a table R with preference relation P (P is
described by CP-nets), k is a positive integer, then the top-k tuples
of R is defined as:

top-k(R) ={t; |t e RA (1 <i < k) A (Vt; € top-k)
(Vt’ e R —top-k(R)) (t; > t")}.

6.1. Motivating example

Example 2. We introduce here a relation table R with CP-nets
preference shown in Fig. 6. Observing that tuples t,, tg and ty; are
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t G Wi | S

t Co | Wa | S
CPT(S) Crn Wy S. > 8 ty C /4 N

Is Co | W | S
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Table R

Se > 8¢
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Fig. 6. A relation table with CP-nets preference.

out of 2 which includes eight outcomes decided by its CP-net,
because Cp ¢dom(C), W, &dom(W), S, ¢dom(S). Thus we define
V(P, A;) the set of active terms for preference Py, over attribute A;,
i.e.V(P, Aj)Cdom(A;), and T(P, A) the set of active tuples of R featur-
ing active terms for every attribute of P4(all other tuples are called
inactive), it holds that 4(T(P, A))<V(P, A). For example, for table
RV(P.C) = {G.Cg}. V(P.W) = (W, Wz} V{P.S) = {Sc. S T(Pews.
{C W, S} ={t1, t3, tyg, ts, t7, tg, Lo, t10}.

Let Q4 be the query condition, that is the union of dom(A), and
Ans(Qa) be the set of tuples matching the query Q4. PQ4 denotes
the preference P, together with the query Q4, the answer to PQg is
the sequence Ans(PQ4). Now we sort all the tuples as the following
processing steps:

. P¢
Q: (C=G)Vv(C=Cy),
Ans(Qc) = {t1, t3, ta, ts, b6, b7, t3, ta, tg, t1 }
Ans(PQc) = {t1, tg, t7, tyg, t11} > {t3. t5, g, g, Lo}
e Pew
Qw : C=GAW=W)v (=AW =Wy v(IC=CAW=
\/Vl)\/(Csz/\szd),
Ans(Qew) = {t1. 13, ta. ts, t7, tg, by, to, ti1 },
Ans(PQew) = {t1, t4} > {t7, tro, tr1} U {t5, to} > {13, t}.
* Pews
Ans(Qews) = {t1. 3. t4, b5, b7, tg, L9, 1o},
?ns}(Pchs) ={t1} > {ta} > {{t7} > {t1o}} U {{ta} > {ts}} > {tz} >
tgf.

Note that the answer to a preference query is a sequence
of data blocks, where each block contains data that are more
preferred than those in the blocks after. Just like the resulting
block sequence essentially linearizes the order of tuples induced
by the preference Pcys as depicted in Ans(PQcys). In this way,
the user can inspect the blocks by turn and stop at any point at
which he feels satisfied by the data. In other words, we don’t even
need to construct and linearize this Cartesian product, instead, we
can simply generate its block sequences, which rely solely on the
number of necessary queries and avoid database rescans.

6.2. Query-ordering algorithms with CP-nets preference

As for block sequence, it is proposed by Georgiadis in Efficient
Rewriting Algorithms for Preference Queries (Georgiadis, Kapan-
taidakis, Christophides, Nguer, & Spyratos, 2008), including LBA
(Lattice Based Algorithm), TBA (Threshold Based Algorithm) and
corresponding theorems. Algorithm LBA takes as input a relation
R and a preference expression P, involving a subset A of R’s
attributes. Then, it outputs progressively successive blocks of T(P,
A). Each time a block is computed, the user may signal to continue
with the next one; alternatively, he may request to obtain the top-
k tuples of T(P, A). However, unlike existing qualitative preference

OO

N

Fig. 7. A vertex relation diagram.

frameworks, our preference query is more sophisticated in consid-
eration of dependencies among A, thus we expand query-ordering
algorithm by introducing two operators (®, ®):

©®——the composition operator for vertices which depend on no
other vertex,

@——the composition operator for vertices which depend on other
vertex, and two vertex sets (S;, Sq):

S; ——the set of vertices which depend on no other vertex,

Sq ——the set of vertices which depend on other vertex.

For example, observing the following vertex relation diagram
in Fig. 7, we have:

S; = {A. B, D},

Sq = {C,E, F}, and the relations between S; and S; are:

C < {A B}LE < {C, B},F < {E, D}.

Rule 3. The preference composition for attributes of relation R
is a composition sequence, which should be carried out in this
order: firstly, compose these attributes in S; using operator ©
progressively, and then compose attributes in S; using operator &
in turn, each time, for the selected attribute to be composed,
it must be sure that all its parents have been included in the
preceding sequence.

Just like the attribute set in Fig. 7, the composition sequence of
all attributes is:

PBhoPBoPhaoP ohokh

Si Sa

As for ©, it is the composition of two non-dependent attributes,
we can obtain the sequence of blocks as the answer to the pref-
erence query Py by LBA. It is worth noticing that the resulting
block sequence essentially linearizes the order of tuples after
finishing all the ® operations in S;, just like PQc and PQcy shown
in example 2. As for @, it further subdivides these blocks derived
from previous process, by using CPT of attributes in S;. Hence,
the Query-Ordering Algorithm with CP-nets Preference (QOCP)
(Algorithm 2) is presented as follows.

ConstructQuerySets divides A into sets S; and S; according to
whether the attribute has parents. LBA (lines 3-9) is realized by
two steps: generating a query block sequence and outputting the
computed block. In which, ConstructQueryBlocks (line 3) traverses
recursively a preference expression tree P4 (from Proot) and com-
putes bottom-up the number of blocks and their origin in QB. In
our model, VA, B € S;, the equal preference relation P4 ~ Py holds,
because there are no dependencies among attributes in S;. There-
fore, for each QB entry it generates the structure of the respective
block sequence only when ~ appears as a preference relation
between expressions Pleft and Pright (shown in Algorithm 3);
Evaluate (line 7) executes each query g; of its input set Ug,, finally,
it outputs the computed block and returns its size. By iteratively
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Algorithm 2 Query-ordering algorithm with CP-nets preference
(Qocp).

Algorithm 4 Improved query-ordering algorithm with CP-nets
preference (IQOCP).

Require: a relation R, a CP-net with attribute set A and a k > 0
Ensure: the top-k tuples of R
1: ConstructQuerySets(S;, Sy)

2: totalsize =0, j =1

3: QB = ConstructQueryBlocks(R,)

4:1=0

5: repeat

6:  Ug = GetBlockQueries(QB[i])

7. BS = Evaluate(Ug,)

8 i+=1

9: until ExitReq or i = |QB]|

10: P = BS

1: Q=%

12 N=num(P) // the number of blocks in block se-
quence

13: repeat

14: M = GetAttribute(Q)

15:  repeat

16: P(j) = SubDividedSequ(P(j), CPT (M))

17: ji=j+1

18:  until j > N

199 Q=Q-M

20: until Q = ¢

21: Output (P, k) // output the top-k tuples in P

Algorithm 3 ConstructQueryBlocks.

Require: a preference expression Py

Ensure: a query block sequence QB
1: if P is a leaf then

2: QB =PrefBlocks(V (P, A;))

3: else

4. QB_left = ConstructQueryBlocks(P.left)

5. QB_right = ConstructQueryBlocks(P.right)

6: end if

7. for each w < [0, |QB_left| + |QB_right| — 1] do
8:  QB[w] = UJ{QB_left[i] « QB_right[j]|i + j = w}
9: end for

10: return QB

calling GetBlockQueries (line 6) to create the associated list of
conjunctive queries and Evaluate (line 7) to output successive T(P,
A) blocks, we can get the successive blocks of T (P, S;), that is the
block sequence for S;, namely BS;.

GetAttribute (line 14) derives the attribute which has not been
composed but whose all parent attributes have been composed
from S, SubDividedSequ (line 16) further partitions these blocks
into several subsets one by one by using the attribute’s CPT. GetAt-
tribute and SubDividedSequ are repeated until the compositions
of all attributes in S; are finished (lines 13 to 20). Thus, we can
linearize all tuples of T(P4, A) and compute the top-k tuples from
this sequence.

However, observing Ans(PQcy) and Ans(PQcys) in Example 2,
we can find that if the total number of tuples in the top i BSg
blocks > k and the total number of tuples in the top(i — 1) BSg
blocks < k (Algorithm 4 lines 13 to 16), we only need to call
SubDividedSequ for the ith block (Algorithm 4 line 19). Therefore,
the improved Query-Ordering Algorithm with CP-nets Preference
(IQOCP) (Algorithm 4) is presented as follows.

The cost of IQOCP is mainly due to the number of conjunctive
queries it has to execute in order to construct a block of the

Require: a relation R, a CP-net with attribute set A and a k > 0
Ensure: the top-k tuples of R
1: ConstructQuerySets(S;, Sy)

2: totalsize =0,i=0

3: QB = ConstructQueryBlocks(R,)

4:i=0

5: repeat

6:  Ug = GetBlockQueries(QB[i])

7. BS = Evaluate(Ug,)

8 i+=1

9: until ExitReq or i = |QB|

10: P = BS

1: Q=%

12: N=num(P) // the number of blocks in block se-
quence

13: repeat

14: totalsize = totalsize + |P(i)| // the total number of
tuples in the top i blocks

150 i=i+1

16: until totalsize > k or i > N

17: repeat

18: M = GetAttribute(Q)

19:  P(i) = SubDividedSequ(P(i), CPT (M))

200 Q=Q-M

21: until Q = ¢

22: Output(P, k) // output the top-k tuples in P

answer. A conjunctive query is usually evaluated by traversing
the available indices on the involved attributes, intersecting the
tids (tuple identifiers) and then fetching the matching tuples from
the disk. Assuming that n queries (each query is q) are executed
in total to construct the resulting block sequence, the algorithm
cost will be O(nx* (log|R| + |ans(q)|))(Georgiadis, Kapantaidakis,
Christophides, Nguer, & Spyratos, 2008). In the best case, only one
query (i.e.,, n = 1) is required and the number of returned tuples is
very small, in particular, when |V(P, A)| < <|T(P, A)|, the practical
cost drops to O(log|R|). In the worst case, all the lattice queries
need to be executed to construct the entire block sequence as
just a few of the leaf queries actually return almost all of the
active tuples. Thus, the total cost of the index traversals will rise
to O(|V(P, A)|*log|R|) where |V(P,A)| = x;|V(P,A;)|, In particular,
when |V(P, A)| > >|T(P, A)|, the practical complexity of IQOCP in
the worst case becomes O(|V(P, A)|).

6.3. An example

Here we give an example to demonstrate the solution process
for Algorithm 4. Consider table R(Numid, T, B, D, A, C, P) in Fig. 8,
describing part of the contents of an Insurance Model Selection
Library (IMSL), where for simplicity each tuple is identified by a
tuple identifier (Numid). A customer wishing to buy an insurance
might state the following preferences over IMSL resources:

(1) critical illness cover (T.) is preferred to individual personal
accident insurance (T,); (preference Pr)

(2) 10-year period (Dq) is preferred to 20-year period (D);
(preference Pp)

(3) $200,000 (A,) is preferred to $100,000 (A,) insured amount
if individual personal accident insurance (T;) or 20-year
insurance duration (D,) selected, whereas $100,000 insured
amount is preferred if critical illness cover (T.) or 10-year
insurance duration (D;) selected; (preference P,)



X. Sun et al./Expert Systems With Applications 86 (2017) 32-41 39

Numid| T | B | D | A | C | P
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CP-net Table R

Fig. 8. Insurance recommendation with CP-nets preference.

(4) monthly payment (Py) is preferred to yearly payment (P,)
if the insured amount is $100,000 (A, ), whereas yearly pay-
ment is a better selection if the insured amount is $200,000
(Aq). (preference Pp)

Such statements define actually binary relations: (1), (2), (3)
and (4) defined over attribute domains, in which, relations (1)
and (2) are independent, (3) depends on (1) and (2), whereas (4)
depends on (3), therefore, the customer’s preference is a CP-nets
preference just like shown in Fig. 8.

Now we need to recommend 3 insurances with different at-
tribute settings for this customer, that is, compute the top-3 tuples
of R.

Observing table R and CP-net in Fig. 8, we can find that there
are altogether six attributes (i.e,, T, B, D, A, C and P) taken into
account for an insurance configuration. However, the customer
only focuses on four attributes (i.e.,, T, D, A and P) while deciding
to select an insurance, which is the attribute set V and whose
detailed preferences are depicted in CP-net. Therefore, we rec-
ommend the top-k outcomes to the customer from table R only
relying on his CP-net.

Let us consider first the dependencies among attributes in CP-
net, which partition the attribute set V into two subsets, such that:

S;={T. D},

Sq¢ = {A, P},and the relations between S; and S, are:

A < {T,D},P < {A}.

According to rule 3, the composition sequence of all attributes
in Vis:

ProPh ol ob
~—— ———
Si Sa
Step 1, we will compute the operator ® in S;:

(1) The preference Pr which relates two values of the attribute
T, namely T, and T,. The underlying assumption here is that
the only tuples that are of interest to the user are those
containing one of these values. Therefore, the set of tuples
matching Py is the answer to the query Q7 : (T=T;) v (T =
T,). Referring to table R, the answer to Qr is the following:
Ans(Qr) = {t1, &, ta, s, bs, U7, tg, Lo, tro, L1, 12, E13, L1y L5,

°°

(©

O
@
.@

Separable-structured Chain-structured DAG

Fig. 9. Three kinds of CP-nets.

t17, tig, t9, tyo}, in the same way, the answer to Qp is the
following: Ans(Qp) = {t1, t, t3, ta, ts, tg, t7, tg, to, tio, 12,
t13, t1a, t1s, ties t17, t1g, 19, Lo} Consequently, the answer to
Qrop is the following: Ans(Qrp) = Ans(Qr) NAns(Qp) =
{t1, t2, ta, ts, L6, t7, Lg, Ly, tr0, t12, £13, bra, bys, by7, Lig, Lig, L20)-
(2) Then, we compute the block sequence answering a prefer-
ence query. The block sequences of Py and Pp are {Tc}~{Tq}
and {Dq}~{D,} respectively. Thus, according to the prefer-
ence composition theorems in (Georgiadis, Kapantaidakis,
Christophides, Nguer, & Spyratos, 2008):
“Given the block sequences Xg >~ X7 > --- > X;,_» > X,_1, and
Yo>~Y1 > =Yn_o>Yn_1 of two preferences Px and Py,
the block sequence Zy ~Zy > --- > Zyym_3 > Znam—2 Of the
preference induced by Py ® Py over X x Y, will consist of
n+m — 1 blocks; each block Z, will comprise elements only
from blocks X; and Y;, such that g+r = p.”
Thus, for Pr ® Pp, the block sequence for preference query
is:
QB =T.D; > Dy | JTaD; = TuD.
and the answer to this query block sequence is the follow-
ing:
BSs = {t1, tg, t13, t15, t17} > {t6, t7, tr0, t20} U {ts., ts, L9, t1a}
> {t2, t12, tig, t1o}-

Note that there is only one block BSs(1) needing to be further
subdivided owing to |BSs(1)| > 3.
Step 2, we will compute the operator & in S;:

(1) For Py, by using CPT(A), BSs(1) is subdivided to the following
sequence:
P(1) = {ty, t13, 15, t17} > {ta}.

(2) For Pp, by using CPT(P), P(1) is further subdivided to the
following sequence:
P(1) = {t13. ts5, t17} > {t1} > {ta}.

Now, we can recommend the following insurance outcomes to
the customer:

top-3(R) = {t13, t1s, ti7}.
7. Experiment

As a common ground for performance comparison of all
algorithms, we conducted experiments on an 1.60GHz Intel(R)
Core(TM) CPU with 4GB RAM running Windows 8.1 system, all im-
plemented in Java on top of PostgreSQL 9.2. We used a simulation
dataset just like shown in Fig. 8.

The effect of different structures of CP-nets: In Fig. 9 we
identified three kinds of binary CP-nets: separable-structured,
chain-structured and DAG CP-nets.

To carry out the strong dominance tests of different structured
CP-nets, their database handling cost and preference composition
cost were compared respectively in this three kinds of CP-nets
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Table 2
Space performance for CP-nets with different structures .

Structures Numbers of |V]|

5 6 7 8 9 10
tree-structured 509 730 841 956 1075 1179
polytree 71 1056 1578 2351 3647 5980
directed-path singly connected 975 1572 2605 5774 9411 12325

Database Handling Time (sec)

Preferance Composition T

Number of Attributes Number of Attributes

(a) (L]

Fig. 10. Processing time vs number of attributes(1).
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Fig. 11. Processing time vs number of attributes(2).

with 3, 4, 6, 8 and 10 attributes. As shown in Fig. 10(a), the
database handling mainly includes inducing the CP-nets into
tables and table joins operations. Despite there will be n induced
tables for any CP-nets with n attributes, the amounts of data in
these tables are significantly different, owning to the fact that
the more dependencies among attributes, the more tuples there
will be in induced tables. But for preference composition cost, we
mainly take into account the comparisons among tuples according
to extending Pareto composition. Note that the number of tuples
in a composed table is fixed, i.e., for n attributes compositions,
there will obtain 2" tuples. Hence, there is approximately the
same cost for three kinds of CP-nets in Fig. 10(b).

In particular, we randomly generated three kinds of DAG
CP-nets: tree-structured CP-nets, polytree CP-nets, directed-path
singly connected CP-nets, by varying the numbers of variable
|V|, the structures of the network and the conditional preference
tables, and see how they affect the performance of the proposed
algorithm, here |V| was set to 5, 6,7, 8, 9 and 10 respectively,
|Dom(X;)| was set to 2. The response time for solving dominance
querying was illustrated by Fig. 11. The experimental results are
consistent with Fig. 10, that is, the complexity of dominance
querying with respect to binary-valued CP-nets shows a connec-
tion between the structure of the CP-net graph and database
handling time. This conclusion is justified as the CPTs are part of
the problem description, and the size of a CPT(X;) is exponential
in |Pa(X;)|), hence, there are significant increases in the I/O cost
of inducing CP-nets into Database tables (shown in Fig. 11(a))
and the size of the database storage space (shown in Table 2, the
numbers of bytes vary with the changes of numbers of |V| and

100

s QOCP e [QOCP
75

Exec . Time (sec)

J———

e

10 50 100 500 1000

Database Size (MB)

Fig. 12. Total processing time vs database size.

CP-net structures), but there is approximately the same memory
cost of preference composition (shown in Fig. 11(b)) with |0O| fixed.

The effect of database size: In this experiment, we scaled up
the sizes of the database from 10 to 1,000 MB (or from 100K
to 10,000K tuples) to perform QOCP and IQOCP, V(P, A) is fixed.
Fig. 12 depicts the total execution time of the 2 algorithms. As
expected, IQOCP is significantly more efficient than QOCP owing
to reducing the number of comparisons. But their performances
are not rapidly increasing as the database grows. This is due to
the fact that, as |V(P, A)| < <|T(P, A)|, queries of the first Query
Lattice block (for LBA) most probably suffice for computing the
answer, regardless the fact that their answer size has grown.
Their performances fall gradually with database growth only when
tuples need to be retrieved from the database.

8. Conclusion

In this article, we have mainly designed the operators of prefer-
ence composition. The traditional Pareto composition is extended
to preference modeled by CP-nets, preserving a strict partial order
and non-associativity, on this basis, two questions have been
solved: how to generate the satisfiability sequences of CP-nets
and how to get the top-k tuples of relational table with CP-nets
preference. The first question is solved by inducing a CP-net into
multiple tables—realizes the storage of CP-nets, and natural join
operations—gets the dominance tests of all outcomes. For the
second question, to realize the top-k queries, existing algorithms
like Block Nested Loop (BNL)(Borzsony, Kossmann, & Stocker, 2001)
and Best (Torlone & Ciaccia, 2002b) are agnostic to preference
expressions, whose semantics is captured only externally by the
employed dominance testing functions. For this reason, they need
to access all tuples of a relation R at least once and perform
for every R tuple at least one dominance test. Hence, they are
inadequate for large databases. Moreover, as both have to read
the entire relation before returning the top block, they are not
suitable for a progressive result computation, as QOCP and IQOCP
are. QOCP and IQOCP both scale linearly based on Query Lattice,
the sequence is divided into multiple blocks firstly, and then
every block is subdivided by using CPT. IQOCP improves QOCP by
avoiding to subdivide blocks which have already been contained
in the top-k tuples, that is, only one block needs to be subdivided.
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We also know the conclusion that for voluminous databases,
LBA is best for queries with short standing preferences (typically
resulting to small query lattices), while TBA wins when long
standing preferences (typically resulting to larger query lattices)
are used instead. So we are interested in extending corresponding
queries by TBA for a long standing CP-nets preference over 5
attributes with 12 values each.
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